中文版 | English
题名

二维硫化钼宽带的生长研究

其他题名
Growth of two-dimensional molybdenum disulfide ribbons
姓名
姓名拼音
ZHOU Chi
学号
12232066
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
程春
导师单位
材料科学与工程系
论文答辩日期
2024-05-19
论文提交日期
2024-07-07
学位授予单位
学位授予地点
深圳
摘要

过渡金属硫族化合物(TMDCs)已在多个领域获得广泛的应用,包括电子、光电子、热电、气体传感器和催化等。特别是二硫化钼(MoS2),其由于高载流子迁移率、强光子-物质相互作用以及在光调制中的潜在应用,引起了人们的极大兴趣。化学气相沉积法(CVD)是生产大尺寸、高质量二硫化钼薄膜最有力的方法,通过改变生长条件(如温度、压力和载气流速)可以有效控制二硫化钼薄片的层数、尺寸和形状。尽管各种形貌的二硫化钼被制备,然而具有超大尺寸的二硫化钼单畴晶片生长还十分困难;这是因为传统的CVD生长中,二硫化钼在平面生长的速度较慢。因此,创新生长动力学的调制策略,获得高度各向异性的生长,对于获取大尺寸单晶畴产物极为重要。

据此,本文提出在反应物中加入生长助推剂Na2CO3的策略来实现单层二硫化钼的各向异性生长,从而可重复获得带状的产物。首先,我们通过调控反应中前驱体的硫:钼(S:Mo)比,来对普通三角形单层二硫化钼的生长进行优化:调控生长过程中的各种参数,包括生长空间、金属前驱体的浓度,中心区域的温度,硫源位置等来实现硫:钼比趋于2:1,从而实现对MoS2形核密度、形状尺寸的优化,获得重复性优秀的MoS2平面生长的实验环境。然后,在以上的优化生长基础上,在反应物中加入生长助推剂Na2CO3,我们成功制备了超长MoS2宽带。Na2CO3在生长温度分解产生的CO2气体被认为推动衬底表面反应液滴的快速移动,从而驱动了高度的各向异性生长。我们期望这种生长助推剂的策略,能为高质量、超大面积的TMDCs薄膜制备提供新的思路。

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306: 666-669.
[2] GEIM A K. Graphene: Status and prospects [J]. Science, 2009, 324: 1530-1534.
[3] CHEN X, FAN K, LIU Y, et al. Recent advances in fluorinated graphene from synthesis to applications: Critical review on functional chemistry and structure engineering [J]. Advanced Materials, 2022, 34: e2101665.
[4] ELIAS D C, GORBACHEV R V, MAYOROV A S, et al. Dirac cones reshaped by interaction effects in suspended graphene [J]. Nature Physics, 2011, 7: 701-704.
[5] WU J, LIN H, MOSS D J, et al. Graphene oxide for photonics, electronics and optoelectronics [J]. Nature Reviews Chemistry, 2023, 7: 162-183.
[6] WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nature Nanotechnol, 2012, 7: 699-712.
[7] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors [J]. Nature Nanotechnol, 2011, 6: 147-150.
[8] LEMBKE D, BERTOLAZZI S, KIS A. Single-layer MoS2 electronics [J]. Accounts of Chemical Research, 2015, 48: 100-110.
[9] ZHANG H. Ultrathin two-dimensional nanomaterials [J]. ACS Nano, 2015, 9: 9451-9469.
[10] CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets [J]. Nature Chemistry, 2013, 5: 263-275.
[11] JOSEPH S, MOHAN J, LAKSHMY S, et al. A review of the synthesis, properties, and applications of 2D transition metal dichalcogenides and their heterostructures [J]. Materials Chemistry and Physics, 2023, 297.
[12] ZHANG T, WANG J, WU P, et al. Vapour-phase deposition of two-dimensional layered chalcogenides [J]. Nature Reviews Materials, 2023, 8: 799-821.
[13] S. B, J. B, A. K. Stretching and breaking of ultrathin MoS2 [J]. ACS Nano, 2011, 5: 9703-9709.
[14] HUANG J K, PU J, HSU C L, et al. Large-area synthesis of highly crystalline WSe2 monolayers and device applications [J]. ACS Nano, 2014, 8: 923-930.
[15] WU W, WANG L, YU R, et al. Piezophototronic effect in single-atomic-layer MoS2 for strain-gated flexible optoelectronics [J]. Advanced Materials, 2016, 28: 8463-8468.
[16] LI H, YIN Z, HE Q, et al. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing no at room temperature [J]. Small, 2012, 8: 63-67.
[17] LI H, WU J, YIN Z, et al. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets [J]. Accounts of Chemical Research, 2014, 47: 1067-1075.
[18] COLEMAN J N, LOTYA M, O'NEILL A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials [J]. Science, 2011, 331: 568-571.
[19] GRAYFER E D, KOZLOVA M N, FEDOROV V E. Colloidal 2D nanosheets of MoS2 and other transition metal dichalcogenides through liquid-phase exfoliation [J]. Advance Colloid Interface Science, 2017, 245: 40-61.
[20] MORTELMANS W, HILSE M, SONG Q, et al. Measuring and then eliminating twin domains in snse thin films using fast optical metrology and molecular beam epitaxy [J]. ACS Nano, 2022, 16: 9472-9478.
[21] ATSUSHI KOMA K S A T M. Fabrication-and-characterization-of-heterostructures [J]. Microelectronic Engineering, 1984, 2: 129-136.
[22] PIAO M, CHU J, WANG X, et al. Hydrothermal synthesis of stable metallic 1t phase WS2 nanosheets for thermoelectric application [J]. Nanotechnology, 2018, 29: 025705.
[23] ZAFAR A, ZAFAR Z, ZHAO W, et al. Sulfur‐mastery: Precise synthesis of 2D transition metal dichalcogenides [J]. Advanced Functional Materials, 2019, 29: 1809261.
[24] LEE J, PAK S, GIRAUD P, et al. Thermodynamically stable synthesis of large-scale and highly crystalline transition metal dichalcogenide monolayers and their unipolar n-n heterojunction devices [J]. Advanced Materials, 2017, 29: 1702206.
[25] LIU K K, ZHANG W, LEE Y H, et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates [J]. Nano Letters, 2012, 12: 1538-1544.
[26] KANG K, XIE S, HUANG L, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity [J]. Nature, 2015, 520: 656-660.
[27] THOMPSON A G. Mocvd technology for semiconductors [J]. Materials Letters, 1997, 30: 255-263.
[28] CHOUDHURY T H, SIMCHI H, BOICHOT R, et al. Chalcogen precursor effect on cold-wall gas-source chemical vapor deposition growth of WS2 [J]. Crystal Growth & Design, 2018, 18: 4357-4364.
[29] LUNCEFORD C, BORCEAN E, DRUCKER J. Uniform and repeatable cold-wall chemical vapor deposition synthesis of single-layer MoS2 [J]. Crystal Growth & Design, 2016, 16: 988-995.
[30] WANG S, RONG Y, FAN Y, et al. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition [J]. Chemistry of Materials, 2014, 26: 6371-6379.
[31] SHI R, HE P, CAI X, et al. Oxide inhibitor-assisted growth of single-layer molybdenum dichalcogenides (MoX2, X = S, Se, Te) with controllable molybdenum release [J]. ACS Nano, 2020, 14: 7593-7601.
[32] WANG J, LUO Y, CAI X, et al. Multiple regulation over growth direction, band structure, and dimension of monolayer WS2 by a quartz substrate [J]. Chemistry of Materials, 2020, 32: 2508-2517.
[33] TANG L, LI T, LUO Y, et al. Vertical chemical vapor deposition growth of highly uniform 2D transition metal dichalcogenides [J]. ACS Nano, 2020, 14: 4646-4653.
[34] XU M, JI H, ZHENG L, et al. Reconfiguring nucleation for CVD growth of twisted bilayer MoS2 with a wide range of twist angles [J]. Nature Communications, 2024, 15: 562.
[35] CHEN W H, CHEN Q W, CHEN Q, et al. Biomedical polymers: Synthesis, properties, and applications [J]. Science China Chemistry, 2022, 65: 1010-1075.
[36] LEONHARDT A, CHIAPPE D, AFANAS'EV V V, et al. Material-selective doping of 2D tmdc through AlxOy encapsulation [J]. ACS Applied Materials & Interfaces, 2019, 11: 42697-42707.
[37] MATTINEN M, LESKELä M, RITALA M. Atomic layer deposition of 2D metal dichalcogenides for electronics, catalysis, energy storage, and beyond [J]. Advanced Materials Interfaces, 2021, 8: 2001677.
[38] LI X, YANG J, SUN H, et al. Controlled synthesis and accurate doping of wafer-scale 2D semiconducting transition metal dichalcogenides [J]. Advanced Materials, 2023: e2305115.
[39] NAN H, ZHOU R, GU X, et al. Recent advances in plasma modification of 2D transition metal dichalcogenides [J]. Nanoscale, 2019, 11: 19202-19213.
[40] FENG S, TAN J, ZHAO S, et al. Synthesis of ultrahigh-quality monolayer molybdenum disulfide through in situ defect healing with thiol molecules [J]. Small, 2020, 16: e2003357.
[41] JIN Y, CHENG M, LIU H, et al. Na2SO4-regulated high-quality growth of transition metal dichalcogenides by controlling diffusion [J]. Chemistry of Materials, 2020, 32: 5616-5625.
[42] ZHOU J, LIN J, HUANG X, et al. A library of atomically thin metal chalcogenides [J]. Nature, 2018, 556: 355-359.
[43] WANG Q, WANG S, LI J, et al. Modified spatially confined strategy enabled mild growth kinetics for facile growth management of atomically-thin tungsten disulfides [J]. Advanced Science, 2023, 10: e2205638.
[44] LIN Y C, YEH C H, LIN H C, et al. Stable 1t tungsten disulfide monolayer and its junctions: Growth and atomic structures [J]. ACS Nano, 2018, 12: 12080-12088.
[45] DONG J, ZHANG L, DAI X, et al. The epitaxy of 2D materials growth [J]. Nature Communications, 2020, 11: 5862.
[46] YANG P, ZHANG S, PAN S, et al. Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111) [J]. ACS Nano, 2020, 14: 5036-5045.
[47] GOVIND RAJAN A, WARNER J H, BLANKSCHTEIN D, et al. Generalized mechanistic model for the chemical vapor deposition of 2D transition metal dichalcogenide monolayers [J]. ACS Nano, 2016, 10: 4330-4344.
[48] YANG S Y, SHIM G W, SEO S-B, et al. Effective shape-controlled growth of monolayer MoS2 flakes by powder-based chemical vapor deposition [J]. Nano Research, 2016, 10: 255-262.
[49] LI S, LIN J, CHEN Y, et al. Growth anisotropy and morphology evolution of line defects in monolayer MoS2 : Atomic-level observation, large-scale statistics, and mechanism understanding [J]. Small, 2024, 20: e2303511.
[50] WU D, SHI J, ZHENG X, et al. CVD grown MoS2 nanoribbons on MoS2 covered sapphire(0001) without catalysts [J]. Physica Status Solidi – Rapid Research Letters, 2019, 13.
[51] LI S, LIN Y C, ZHAO W, et al. Vapour-liquid-solid growth of monolayer MoS2 nanoribbons [J]. Nature Materials, 2018, 17: 535-542.
[52] YANG C, WANG B, XIE Y, et al. Deriving MoS2 nanoribbons from their flakes by chemical vapor deposition [J]. Nanotechnology, 2019, 30: 255602.

所在学位评定分委会
材料与化工
国内图书分类号
O782.7
来源库
人工提交
成果类型学位论文
条目标识符//www.snoollab.com/handle/2SGJ60CL/779079
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
周池. 二维硫化钼宽带的生长研究[D]. 深圳. ,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232066-周池-材料科学与工程系(5445KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[周池]的文章
百度学术
百度学术中相似的文章
[周池]的文章
必应学术
必应学术中相似的文章
[周池]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map