中文版 | English
题名

两种手性零维杂化金属卤化物的制备与光学性能研究

其他题名
PREPARATION AND OPTICAL PROPERTIES OF TWO CHIRAL ZERO-DIMENSIONAL HYBRID METAL HALIDES
姓名
姓名拼音
ZHANG Yan
学号
12132822
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
权泽卫
导师单位
化学系
论文答辩日期
2024-05-10
论文提交日期
2024-07-06
学位授予单位
学位授予地点
深圳
摘要

手性零维杂化金属卤化物由于其出色的光学性能,在圆偏振发光(CPL) 应用领域具有无限的潜力。光致发光量子产率(PLQY)以及发光不对称因 子(glum)是衡量手性材料 CPL 性能的重要标准。尽管手性零维杂化金属卤 化物的研究已经取得一定进展,但同时具备高 PLQY 和高 glum 值的材料的研 究仍处于初始阶段。本文以开发兼具高 PLQY 和高 glum 值的新型手性零维杂 化金属卤化物为目标,制备了铜和稀土基手性杂化金属卤化物,并对其结构 和光学性能进行了深入研究,具体工作如下: 采用冷却结晶法,以内消旋的 1,2-环己二胺(DACH)为配体制备了不 发光材料(18C6@meso-DACH)2Cu2I6(18C6=18-冠醚-6,meso-DACH=顺式1,2-环己二胺)。而使用具有手性的 DACH 配体,则会诱导无机金属卤化物 单元对称性破缺进而发生结构重组,形成具有明亮黄光发射的手性零维 Cu 基杂化金属卤化物(18C6@S/R-DACH@18C6)Cu4I6,该材料具有接近 100%的 PLQY,其 glum 达到了±0.005。而使用外消旋的配体导致材料对称性升高,所 制备的(18C6@rac-DACH)CuI3 仍为不发光材料。结构分析与理论计算的结果 表明,手性的[Cu4I6] 2-团簇,其形成能低于非手性的[CuI3] 2-和[Cu2I6] 4-,而非 手性配体的致密堆积不利于[Cu4I6] 2-团簇的生长,因此大体积的[Cu4I6] 2-仅在 手性分子非致密堆积的结构中形成。本工作一方面揭示了非中心堆积对金属 卤化物结构和性质差异的影响,同时利用手性配体诱导材料结构重组的特点, 成功地实现了材料在手性识别与智能防伪领域的应用。 采用溶剂挥发法,合成了具有稀土窄带发射特点的手性零维 Tb/Eu 基杂 化金属卤化物(S/R-3-MOR)3TbCl6 与(S/R-3-MOR)3EuCl6(S/R-3-MOR=S/R-3- 甲基吗啉),在 365 nm 的紫外光激发下分别呈现明亮的绿色/红色窄带发射, 符合 Tb/Eu 稀土的离子发射特征。基于 Tb/Eu 的手性材料展现出优异的光学 性能,其 PLQY 分别为 91.2%和 52.0%,glum 值分别达到±0.006,±0.009。同 时,这两种材料表现出反热猝灭效应,表明了其在具有高效圆偏振发射的发 光二极管领域的应用潜力。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] TAO K, LI Y, JI C, et al. A Lead-Free Hybrid Iodide with Quantitative Response to X-ray Radiation [J]. Chemistry of Materials, 2019, 31(15): 5927-5932.
[2] CUI Y, YUE Y, QIAN G, et al. Luminescent Functional Metal–Organic Frameworks [J]. Chemical Reviews, 2012, 112(2): 1126-1162.
[3] NIE J, YUN X, CHENG F, et al. Near-unity Photoluminescence Quantum Yield in ZeroDimensional Lead-Free Indium-Based Hybrid Perovskites by Antimony Doping [J]. Journal of Materials Chemistry C, 2024, 12(7): 2571-2577.
[4] JI S, LIU Y, WANG Y, et al. Highly Luminescent Phase-Stable Hybrid Manganese Halides for Efficient X-ray Imaging [J]. Crystal Growth & Design, 2024, 24(5): 2094-2103.
[5] LIAN L, WANG S, DING H, et al. Single-Component White-Light Emitters with Excellent Color Rendering Indexes and High Photoluminescence Quantum Efficiencies [J]. Advanced Optical Materials, 2022, 10(1): 2101640.
[6] SUN C, DENG Z, LI Z, et al. Achieving Near-unity Photoluminescence Quantum Yields in Organic-Inorganic Hybrid Antimony (III) Chlorides with the [SbCl5] Geometry [J]. Angewandte Chemie International Edition, 2023, 62(10): e202216720.
[7] MØLLER C K. Crystal Structure and Photoconductivity of Cæsium Plumbohalides [J]. Nature, 1958, 182(4647): 1436.
[8] WEBER, D. CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure. Zeitschrift für Naturforschung B, 1978, 33, 1443 - 1445.
[9] DONG H, RAN C, GAO W, et al. Metal Halide Perovskite for Next-Generation Optoelectronics: Progresses and Prospects [J]. eLight, 2023, 3(1): 3.
[10] WINOGRADOFF D, LI P Y, JOSHI H, et al. Chiral Systems Made from DNA [J]. Advanced Science (Weinh), 2021, 8(5): 2003113.
[11] CRONIN T W, SHASHAR N, CALDWELL R L, et al. Polarization Vision and Its Role in Biological Signaling1 [J]. Integrative and Comparative Biology, 2003, 43(4): 549-558.
[12] SANG Y, HAN J, ZHAO T, et al. Circularly Polarized Luminescence in Nanoassemblies: Generation, Amplification, and Application [J]. Advanced Materials, 2020, 32(41): 1900110.
[13] LIU K, LIU K, HAO S, et al. Stimuli-Responsive Emission from Hybrid Metal Halides [J]. Advanced Functional Materials, 2024,34(13):2309296.
[14] ZHU Z, WEI L, LAI Y, et al. Photocatalytic Glucose-Appended Bio-Compatible Ir(III) Anticancer Complexes [J]. Dalton Transactions, 2022, 51(29): 10875-10879.
[15] WANG M, WANG X, ZHANG B, et al. Chiral Hybrid Manganese(ii) Halide Clusters with 参考文献60 Circularly Polarized Luminescence for X-ray Imaging [J]. Journal of Materials Chemistry C, 2023, 11(9): 3206-3212.
[16] HAN J H, SAMANTA T, CHO H B, et al. Intense Hydrochromic Photon Upconversion from Lead-Free 0D Metal Halides For Water Detection and Information Encryption [J]. Advanced Materials, 2023, 35(40): 2302442.
[17] WANG Q, BAO J, ZHANG Y, et al. High-Performance Organic Narrow Dual-Band Circular Polarized Light Detection for Encrypted Communications and Color Imaging [J]. Advanced Materials, 2024, 36(13): 2312396.
[18] SHI C, YE L, GONG Z-X, et al. Two-Dimensional Organic–Inorganic Hybrid Rare-Earth Double Perovskite Ferroelectrics [J]. Journal of the American Chemical Society, 2020, 142(1): 545-551.
[19] LI Y-K, LAI Y-Y, YING T-T, et al. A Multifunctional Molecular Ferroelectric with Chiral Features, A High Curie Temperature, Large Spontaneous Polarization and Photoluminescence: (C9H14N)2CdBr4 [J]. Chemical Science, 2021, 12(39): 13061-13067.
[20] TANIGUCHI K, HUANG P-J, KIMURA S, et al. Chiral Weak Ferromagnets Formed in One-Dimensional Organic–Inorganic Hybrid Manganese Chloride Hydrates [J]. Dalton Transactions, 2022, 51(44): 17030-17034.
[21] DEHNHARDT N, AXT M, ZIMMERMANN J, et al. Band Gap-Tunable, Chiral Hybrid Metal Halides Displaying Second-Harmonic Generation [J]. Chemistry of Materials, 2020, 32(11): 4801-4807.
[22] HE X, ZHENG Y, LUO Z, et al. Bright Circularly Polarized Mechanoluminescence from 0D Hybrid Manganese Halides [J]. Advanced Materials, 2024,36(13): 2309906.
[23] ZHOU C, LIN H, HE Q, et al. Low Dimensional Metal Halide Perovskites and Hybrids [J]. Materials Science and Engineering: R: Reports, 2019, 137: 38-65.
[24] CHEN P, BAI Y, LYU M, et al. Progress and Perspective in Low-Dimensional Metal Halide Perovskites for Optoelectronic Applications [J]. Solar RRL, 2018, 2(3): 1700186.
[25] LONG G, ZHOU Y, ZHANG M, et al. Theoretical Prediction of Chiral 3D Hybrid Organic–Inorganic Perovskites [J]. Advanced Materials, 2019, 31(17): 1807628.
[26] CHEN G, LIU X, AN J, et al. Nucleation-Mediated Growth of Chiral 3D Organic–Inorganic Perovskite Single Crystals [J]. Nature Chemistry, 2023, 15(11): 1581-1590.
[27] ZHI S C, WANG Y L, SUN L, et al. Linking 1D Transition-Metal Coordination Polymers and Different Inorganic Boron Oxides To Construct a Series of 3D Inorganic–Organic Hybrid Borates [J]. Inorganic Chemistry, 2018, 57(3): 1350-1355.
[28] LU H, VARDENY Z V, BEARD M C. Control of Light, Spin and Charge with Chiral Metal Halide Semiconductors [J]. Nature Reviews Chemistry, 2022, 6(7): 470-485.
[29] DONG J, LIU L, TAN C, et al. Free-Standing Homochiral 2D Monolayers by Exfoliation of Molecular Crystals [J]. Nature, 2022, 602(7898): 606-611.
[30] YANG L S, LIN E C, HUA Y H, et al. Circularly Polarized Photoluminescence of Chiral 参考文献61 2D Halide Perovskites at Room Temperature [J]. ACS Applied Materials & Interfaces, 2022, 14(48): 54090-54100.
[31] ORTIZ-CERVANTES C, CARMONA-MONROY P, SOLIS-IBARRA D. TwoDimensional Halide Perovskites in Solar Cells: 2D or not 2D? [J]. ChemSusChem, 2019, 12(8): 1560-1575.
[32] FU H. Dion–Jacobson Halide Perovskites for Photovoltaic and Photodetection Applications [J]. Journal of Materials Chemistry C, 2021, 9(20): 6378-6394.
[33] BILLING D G, LEMMERER A. Synthesis and Crystal Structures of Inorganic–Organic Hybrids Incorporating an Aromatic Amine with a Chiral Functional Group [J]. CrystEngComm, 2006, 8(9): 686-695.
[34] LU H, XIAO C, SONG R, et al. Highly Distorted Chiral Two-Dimensional Tin Iodide Perovskites for Spin Polarized Charge Transport [J]. Journal of the American Chemical Society, 2020, 142(30): 13030-13040.
[35] WANG J, FANG C, MA J, et al. Aqueous Synthesis of Low-Dimensional Lead Halide Perovskites for Room-Temperature Circularly Polarized Light Emission and Detection [J]. ACS Nano, 2019, 13(8): 9473-9481.
[36] QIN Y, GAO F-F, QIAN S, et al. Multifunctional Chiral 2D Lead Halide Perovskites with Circularly Polarized Photoluminescence and Piezoelectric Energy Harvesting Properties [J]. ACS Nano, 2022, 16(2): 3221-3230.
[37] JIN K-H, ZHANG Y, LI K-J, et al. Enantiomorphic Single Crystals of Linear Lead(II) Bromide Perovskitoids with White Circularly Polarized Emission [J]. Angewandte Chemie International Edition, 2022, 61(30): e202205317.
[38] BILLING D G, LEMMERER A. Bis-[(S)-β-phenethyl-ammonium] tri-bromo-plumbate(II) [J]. Acta Crystallographica Section E, 2003, 59(6): m381-m383.
[39] ISHII A, MIYASAKA T. Direct Detection of Circular Polarized Light in Helical 1D Perovskite-Based Photodiode [J]. Science Advances, 6(46): eabd3274.
[40] LI L S, TAN Y H, WEI W J, et al. Chiral Switchable Low-Dimensional Perovskite Ferroelectrics [J]. ACS Applied Materials & Interfaces, 2021, 13(1): 2044-2051.
[41] CUI B B, HAN Y, HUANG B, et al. Locally Collective Hydrogen Bonding Isolates Lead Octahedra for White Emission Improvement [J]. Nature Communications, 2019, 10(1): 5190.
[42] XUAN H L, LI J L, XU L J, et al. Circularly Polarized Luminescence based on 0D LeadFree Antimony (III) Halide Hybrids [J]. Advanced Optical Materials, 2022, 10(16): 2200591.
[43] WANG Z, WANG X, CHEN Z, et al. Turn-on Circularly Polarized Luminescence in Chiral Indium Chlorides by 5s2 Metal Centers [J]. Angewandte Chemie International Edition, 2023, 62(17): e202215206.
[44] QI S, GE F, HAN X, et al. 0D Chiral Hybrid Indium(III) Halides for Second Harmonic Generation [J]. Dalton Transactions, 2022, 51(22): 8593-8599.
[45] ZHENG Y, HAN X, CHENG P, et al. Induction of Chiral Hybrid Metal Halides from 参考文献62 Achiral Building Blocks [J]. Journal of the American Chemical Society, 2022, 144(36): 16471-16479.
[46] SHIAU S Y, COMBESCOT M. A Fresh View on Frenkel Excitons: Electron–Hole Pair Exchange and Many-Body Formalism [J]. Annals of Physics, 2023, 458: 169431.
[47] XU K X, LAI J M, GAO Y F, et al. High-Order Raman Scattering Mediated by Self-Trapped Exciton in Halide Double Perovskite [J]. Physical Review B, 2022, 106(8): 085205.
[48] TAN J, LI D, ZHU J, et al. Self-Trapped Excitons in Soft Semiconductors [J]. Nanoscale, 2022, 14(44): 16394-16414.
[49] LV J-N, ZHANG J, LIU Y-M, et al. Zero-Dimensional Hybrid Tin Halides with Stable Broadband Light Emissions [J]. Dalton Transactions, 2024, 53(10): 4698-4704.
[50] GUO Z, WANG J, YIN W-J. Atomistic Origin of Lattice Softness and Its Impact on Structural and Carrier Dynamics in Three Dimensional Perovskites [J]. Energy & Environmental Science, 2022, 15(2): 660-671.
[51] CHAI C Y, HAN X B, LIU C D, et al. Circularly Polarized Luminescence in ZeroDimensional Antimony Halides: Structural Distortion Controlled Luminescence Thermometer [J]. The Journal of Physical Chemistry Letters, 2023, 14(17): 4063-4070.
[52] ISHIHARA T, TAKAHASHI J, GOTO T. Exciton State in Two-Dimensional Perovskite Semiconductor (C10H21NH3)2PbI4 [J]. Solid State Communications, 1989, 69(9): 933-936.
[53] YUAN Z, ZHOU C, MESSIER J, et al. A Microscale Perovskite as Single Component Broadband Phosphor for Downconversion White-Light-Emitting Devices [J]. Advanced Optical Materials, 2016, 4(12): 2009-2015.
[54] HAN J, LI Y, SHEN P, et al. Pressure-Induced Free Exciton Emission in a Quasi-ZeroDimensional Hybrid Lead Halide [J]. Angewandte Chemie International Edition, 2024, 63(1): e202316348.
[55] DANG Y, LIU X, SUN Y, et al. Bulk Chiral Halide Perovskite Single Crystals for Active Circular Dichroism and Circularly Polarized Luminescence [J]. The Journal of Physical Chemistry Letters, 2020, 11(5): 1689-1696.
[56] AHN J, MA S, KIM J-Y, et al. Chiral 2D Organic Inorganic Hybrid Perovskite with Circular Dichroism Tunable Over Wide Wavelength Range [J]. Journal of the American Chemical Society, 2020, 142(9): 4206-4212.
[57] SIRENKO V Y, KUCHERIV O I, GUMIENNA-KONTECKA E, et al. Chiral 2D Organic–Inorganic Hybrid Perovskites Based on L-histidine [J]. Dalton Transactions, 2022, 51(43): 16536-16544.
[58] LIANG D, XIAO H, CAI W, et al. Mn2+-Based Luminescent Metal Halides: Syntheses, Properties, and Applications [J]. Advanced Optical Materials, 2023, 11(15): 2202997.
[59] BAI X, ZHONG H, CHEN B, et al. Pyridine-Modulated Mn Ion Emission Properties of C10H12N2MnBr4 and C5H6NMnBr3 Single Crystals [J]. The Journal of Physical Chemistry C, 2018, 122(5): 3130-3137. 参考文献63
[60] MO Q, SHI Y, CAI W, et al. Opportunities and Challenges of Low-Dimensional Hybrid Metal Halides in White Light-Emitting Diodes [J]. Journal of Physics D: Applied Physics, 2022, 55(33): 333003.
[61] CHEN J, ZHANG S, PAN X, et al. Structural Origin of Enhanced Circularly Polarized Luminescence in Hybrid Manganese Bromides [J]. Angewandte Chemie International Edition, 2022, 61(30): e202205906.
[62] JIANG R, PENG G, LI Q, et al. Manganese (II) Halides for X-Ray Imaging and Moisture Detection [J]. Advanced Materials Technologies, 2024, 9(6): 2301894.
[63] WU Y, ZHANG X, ZHANG Y-Q, et al. Achievement of Ligand-Field Induced Thermochromic Luminescence via Two-Step Single-Crystal to Single-Crystal Transformations [J]. Chemical Communications, 2018, 54(99): 13961-13964.
[64] CHEN P, HAN W, ZHAO M, et al. Recent Advances in 2D Rare Earth Materials [J]. Advanced Functional Materials, 2021, 31(13): 2008790.
[65] ESCUDERO A, BECERRO A I, CARRILLO-CARRIóN C, et al. Rare Earth Based Nanostructured Materials: Synthesis, Functionalization, Properties and Bioimaging and Biosensing Applications [J]. 2017, 6(5): 881-921.
[66] WANG Q, BAI T, JI S, et al. Ultraviolet Emission from Cerium-Based Organic-Inorganic Hybrid Halides and Their Abnormal Anti-Thermal Quenching Behavior [J]. Advanced Functional Materials, 2023, 33(34): 2303399.
[67] ZHANG P, BAI Y X, WU L, et al. Advances in Relationship Between Lattice Defects and Luminescent Characteristics [J]. Chinese Journal of Luminescence, 2022, 43(9): 1361-1379.
[68] WANG B, ZHU M, JIA X, et al. Bridgman Growth and Intrinsic Luminescence of Pure Cs2ZnCl4 Single Crystal [J]. Journal of Electronic Materials, 2022, 51(11): 6512-6517.
[69] ZHOU J, LI M, NING L, et al. Broad-Band Emission in a Zero-Dimensional Hybrid Organic [PbBr6] Trimer with Intrinsic Vacancies [J]. The Journal of Physical Chemistry Letters, 2019, 10(6): 1337-1341.
[70] ZHANG B B, CHEN J K, MA J P, et al. Antithermal Quenching of Luminescence in ZeroDimensional Hybrid Metal Halide Solids [J]. The Journal of Physical Chemistry Letters, 2020, 11(8): 2902-2909.
[71] JIN X, SANG Y, SHI Y, et al. Optically Active Upconverting Nanoparticles with Induced Circularly Polarized Luminescence and Enantioselectively Triggered Photopolymerization [J]. ACS Nano, 2019, 13(3): 2804-2811.
[72] HAN D, YANG X, HAN J, et al. Sequentially Amplified Circularly Polarized Ultraviolet Luminescence for Enantioselective Photopolymerization [J]. Nature Communications, 2020, 11(1): 5659.
[73] NIU X, ZENG Z, WANG Z, et al. The First Chiral Cerium Halide Towards CircularlyPolarized Luminescence in the UV Region [J]. Science China Chemistry, 2024, 68: 10.26434/chemrxiv-2024-jrx8m. 参考文献64
[74] PENG Y, YAO Y, LI L, et al. White-Light Emission in a Chiral One-Dimensional Organic–Inorganic Hybrid Perovskite [J]. Journal of Materials Chemistry C, 2018, 6(22): 6033-6037.
[75] CHAI C Y, ZHANG Q K, JING C Q, et al. Single-Component White Circularly Polarized Luminescence in Chiral 1D Double-Chain Perovskites [J]. Advanced Optical Materials, 2023, 11(4): 2201996.
[76] YU B, HAN W, LIU G, et al. Oxidation-Induced Dissolution Recrystallization Structural Transformation Strategy Enhanced Nonlinear Optical Effect of Hybrid Chiral Tin Bromide Single Crystals [J]. Inorganic Chemistry, 2023, 62(49): 20520-20527.
[77] PENG H, LIU Q, LIU Y, et al. A Chiral Lead-Free Tin(IV)-Based Halide Organic-Inorganic Semiconductor with Dielectric Switching and Phase Transition [J]. Chinese Chemical Letters, 2023, 34(8): 107980.
[78] WANG Y, WANG C, SUN M, et al. Room Temperature Phosphorescence in Chiral 0D Zn(II) Metal Halide Crystals for Multiple Anti-Counterfeiting [J]. Advanced Optical Materials, 2024, 12(5): 2301843.
[79] HAN X, CHENG P, HAN W, et al. Circularly Polarized Luminescence and Nonlinear Optical Harmonic Generation Based on Chiral Zinc Halides [J]. Chemical Communications, 2023, 59(48): 7447-7450.
[80] AZMY A, KONOVALOVA D M, LEPORE L, et al. Synthesis and Optical Properties of One Year Air-Stable Chiral Sb(III) Halide Semiconductors [J]. Inorganic Chemistry, 2023, 62(49): 20142-20152.
[81] LIU D Y, LI H Y, HAN R P, et al. Multiple Stimuli-Responsive Luminescent Chiral Hybrid Antimony Chlorides for Anti-Counterfeiting and Encryption Applications [J]. Angewandte Chemie International Edition, 2023, 62(36): e202307875.
[82] WANG X, WU Y, GAO F, et al. Chiral Zero-Dimensional Hybrid Organic–Inorganic Metal Halides Based on Nipecotic Acid and Tetrabromocuprate [J]. New Journal of Chemistry, 2024, 48(7): 3192-3198.
[83] GUO Z, LI J, LIANG J, et al. Regulating Optical Activity and Anisotropic Second-Harmonic Generation in Zero-Dimensional Hybrid Copper Halides [J]. Nano Letters, 2022, 22(2): 846-852.
[84] AI Y, CHEN X G, SHI P P, et al. Fluorine Substitution Induced High Tc of Enantiomeric Perovskite Ferroelectrics: (R)- and (S)-3-(Fluoropyrrolidinium)MnCl3 [J]. Journal of the American Chemical Society, 2019, 141(10): 4474-4479.
[85] LI L-S, TAN Y-H, WEI W-J, et al. Chiral Switchable Low-Dimensional Perovskite Ferroelectrics [J]. ACS Applied Materials & Interfaces, 2021, 13(1): 2044-2051.
[86] ZHOU J, XIE P, WANG C, et al. Hybrid Double Perovskite Derived Halides Based on Bi and Alkali Metals (K, Rb): Diverse Structures, Tunable Optical Properties and Second Harmonic Generation Responses [J]. Angewandte Chemie International Edition, 2023, 62(35): e202307646. 参考文献65
[87] ZHU Z K, ZHU T, WU J, et al. Discovering New Type of Lead-Free Cluster-Based Hybrid Double Perovskite Derivatives with Chiral Optical Activities and Low X-Ray Detection Limit [J]. Advanced Functional Materials, 2023, 33(26): 2214660.
[88] LIU Y, DI STASIO F, BI C, et al. Near-Infrared Light Emitting Metal Halides: Materials, Mechanisms, and Applications [J].Advanced Materials, 2024: 2312482.
[89] ZHANG X, YE H, LIANG L, et al. Direct Detection of Near-Infrared Circularly Polarized Light via Precisely Designed Chiral Perovskite Heterostructures [J]. ACS Applied Materials & Interfaces, 2022, 14(32): 36781-36788.
[90] YE H, PENG Y, WEI M, et al. Bulk Photovoltaic Effect in Chiral Layered Hybrid Perovskite Enables Highly Sensitive Near-Infrared Circular Polarization Photodetection [J]. Chemistry of Materials, 2023, 35(17): 6591-6597.
[91] EMERY A A, WOLVERTON C. High-Throughput DFT Calculations of Formation Energy, Stability and Oxygen Vacancy Formation Energy of ABO3 Perovskites [J]. Scientific Data, 2017, 4(1): 170153.
[92] JIN J, FOLGUERAS M C, GAO M, et al. A New Perspective and Design Principle for Halide Perovskites: Ionic Octahedron Network (ION) [J]. Nano Letters, 2021, 21(12): 5415-5421.
[93] ZHOU W, YU Y, HAN P, et al. Sb-Doped Cs3TbCl6 Nanocrystals for Highly Efficient Narrow-Band Green Emission and X-Ray Imaging [J]. Advanced Materials, 2024, 36(2): 2302140.
[94] CORTECCHIA D, MRóZ W, FOLPINI G, et al. Layered Perovskite Doping with Eu3+ and β-diketonate Eu3+ Complex [J]. Chemistry of Materials, 2021, 33(7): 2289-2297.

所在学位评定分委会
化学
国内图书分类号
O71
来源库
人工提交
成果类型学位论文
条目标识符//www.snoollab.com/handle/2SGJ60CL/779059
专题理学院_化学系
推荐引用方式
GB/T 7714
张妍. 两种手性零维杂化金属卤化物的制备与光学性能研究[D]. 深圳. ,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132822-张妍-化学系.pdf(5851KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张妍]的文章
百度学术
百度学术中相似的文章
[张妍]的文章
必应学术
必应学术中相似的文章
[张妍]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map