中文版 | English
题名

长链紫精类化合物的合成及其电致变色与液晶性质的研究

其他题名
SYNTHESIS OF VIOLOGEN DERIVATIVES WITH LONG ALKANE CHAIN AND THE INVESTIGATION OF ELECTROCHROMIC AND LIQUID CRYSTAL PROPERTIES
姓名
姓名拼音
PENG Weilun
学号
12132780
学位类型
硕士
学位专业
070303 有机化学
学科门类/专业学位类别
07 理学
导师
田颜清
导师单位
材料科学与工程系
论文答辩日期
2024-05-09
论文提交日期
2024-07-06
学位授予单位
学位授予地点
深圳
摘要

紫精类化合物是一类具有4,4’-联吡啶盐结构或类似结构的有机小分子,能够在氧化态和还原态下呈现出不同的颜色。因为这类化合物具有合成路线简单、结构可修饰性强、导电性能优异等特点,所以其在电致变色领域和液晶领域内均得到了广泛的关注。虽然关于紫精类化合物的共轭结构对其电致变色性质影响的报道已有大量刊载,但是关于紫精类化合物两端烷基链长度的变化对其电致变色性质及液晶性质的影响仍然有待探索。

通过在紫精分子传统的联吡啶骨架结构中插入噻吩环并对其两侧吡啶环上N原子进行不同长度烷基链修饰的方法,本论文成功合成出了一系列具有不同烷基链长度的2,5-二(4-吡啶)噻吩(PTP)型紫精分子。本论文以6-PTP-m系列紫精分子为电致变色材料制备了一批凝胶电致变色器件,其中电致变色器件6-PTP-6拥有这批器件中最优异的综合性能,其着色态透过率仅为4.7 %,着色响应时间与褪色响应时间仅分别为1.6 s9.2 s,光学对比度高达76.3 %,着色效率高达455.4 cm2/C,器件在循环工作5000次后的光学对比度衰减量仅为2.52 %。对6-PTP-m系列电致变色器件的各项性能进行综合比较后发现,随着紫精材料烷基链长度的增加,相应器件的着色态透过率整体呈上升趋势,光学对比度整体呈下降趋势,而循环稳定性整体上也呈下降趋势。此外,这一系列PTP型紫精分子的液晶性质表征结果说明,只有当PTP型紫精材料两端的烷基链长度足够长时,其才具备液晶性质。并且这批紫精材料的液晶相温度区间将随着分子两端烷基链长度增加而变宽,其中紫精材料7-PTP-10拥有这批紫精材料中最低的熔点(37.4 °C),紫精材料9-PTP-11拥有这批紫精材料中最宽的液晶相温度区间(64.8 °C -127.6 °C)。具有对称烷基链取代结构的PTP型紫精材料通常在同系列紫精材料中具有更高的熔点和相变焓,且随着PTP型紫精材料两端烷基链结构不对称性的增加,其熔点及相变焓会在整体上将呈现出下降的趋势。

本论文初步探究了紫精分子两端烷基链长度的变化对其电致变色性质与液晶性质的影响,所得结论有望为今后紫精类多功能光电材料的分子设计提供一定的帮助。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] MICHAELIS L. Semiquinones, the intermediate steps of reversible organic oxidation-reduction[J]. Chemical Reviews, 1935, 16(2): 243-286.
[2] YU S, YING J, TIAN A X. Applications of viologens in organic and inorganic discoloration materials[J]. ChemPlusChem, 2022, 87(7): e202200171.
[3] WANG P, QIAN C, GUO X, et al. Flexible composite electrochromic device with long-term bistability based on a viologen derivative and prussian blue[J]. ACS Applied Materials & Interfaces, 2024, 16(2): 2522-2529.
[4] LIU G D, WANG Z J, WANG J N, et al. Employing polyaniline/viologen complementarity to enhance coloration and charge dissipation in multicolor electrochromic display with wide modulation range[J]. Journal of Colloid and Interface Science, 2024, 655: 493-507.
[5] LI L, YU Y T, ZHANG N N, et al. Polyoxometalate (POM)-based crystalline hybrid photochromic materials[J]. Coordination Chemistry Reviews, 2024, 500: 215526.
[6] YANG F Y, CHEN J L, FU Y Y, et al. Photoresponse of four D-A supramolecules derived from benzenecarboxylate donors and viologen acceptors[J]. Journal of Molecular Structure, 2024, 1299: 137074.
[7] LI Z H, LI M, XU T Y, et al. A viologen-derived luminescent material exhibiting photochromism, photocontrolled luminescence and selective detection of Cr2O72− in aqueous solution[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2024, 306: 123579.
[8] YUKIHIRO Y, HIROSHI K. Chromic ionic liquids[J]. ACS Applied Electronic Materials, 2021, 3(6): 2468-2482.
[9] TAHARA H, TANAKA Y, YAMAMOTO S, et al. A redox-active ionic liquid manifesting charge-transfer interaction between a viologen and carbazole and its effect on the viscosity, ionic conductivity, and redox process of the viologen[J]. Chemical Science, 2021, 12(13): 4872-4882.
[10] PAPADAKIS R. Mono- and di-quaternized 4,4′-bipyridine derivatives as key building blocks for medium- and environment-responsive compounds and materials[J]. Molecules, 2020, 25(1): 1.
[11] ZHAO S Q, CHEN L S, HUANG W B, et al. Transparent multicolor electrochromic displays with ingenious hues adjustment by integrating cholesteric liquid crystal with viologen gel[J]. Advanced Optical Materials, 2023, DOI: 10.1002/adom.202300503.
[12] DAVIS C M, BORONSKI C E, YANG T Y, et al. Molecular engineering of redox couples for non-aqueous redox flow batteries[J]. Batteries, 2023, 9(10): 504.
[13] HE X M, CHEN L, THOMAS B. Modified viologen- and carbonylpyridinium-based electrodes for organic batteries[J]. ACS Applied Materials & Interfaces, 2023, DOI: 10.1021/acsami.3c09856.
[14] MADASAMY K, VELAYUTHAM D, SURYANARAYANANA V, et al. Viologen-based electrochromic materials and devices[J]. Journal of Materials Chemistry C, 2019, 7(16): 4622-4637.
[15] BYKER H J. A variable reflectance mirror for an automobile: US, EP0725305A2[P]. 1996-08-07.
[16] PRADIP K B, SHANE T K, JESSA R A, et al. Thermotropic liquid-crystalline properties of extended viologen bis(triflimide) salts[J]. Liquid Crystals, 2018, 45(6): 872-885.
[17] BONCHIO M, CARRARO M, CASELLA G, et al. Thermal behaviour and electrochemical properties of bis(trifluoromethanesulfonyl)amide and dodecatungstosilicate viologen dimers[J]. Physical Chemistry Chemical Physics, 2012, 14(8): 2710-2717.
[18] LEANDRO L. P, CAMILA M. C, RAFAELA M.J. L, et al. Effect of ZnO dopant on V2O5:ZnO films electrochromic properties[J]. Materials Chemistry and Physics, 2023, 310: 128423.
[19] HUANG S H, YANG M Q, ZHANG S Y, et al. Evaluation of flexible electrochromic device based on V2O5 film prepared by electrophoresis[J]. International Journal of Nanoscience, 2024, DOI: 10.1142/S0219581X23500837.
[20] CHEN H C, YEN Y H, ZHUANG Y X, et al. Electrochromic performance and potential stability of sputtered V2O5 film for a complementary inorganic all-solid-state electrochromic device[J]. Journal of Electroanalytical Chemistry, 2023, 994: 117628.
[21] CHEN L L, ZHU X M, LIU Y, et al. Electrochromic properties of Ni or Ti single-doped and Ni-Ag or Ti-Ag binary-doped WO3 thin films[J]. Electrochimica Acta, 2024, 475: 143644.
[22] SUN Q M, LI S J, YU X M, et al. Amorphous bismuth-doped WO3 film: Fast-switching time and high-performance proton-based aqueous electrochromic device[J]. Applied Surface Science, 2023, 641: 158510.
[23] MA D Y, YANG B, WANG J M. Boosting the self-recharging of polypyrrole/prussian blue electrochromic device by potential difference-driven alternative redox[J]. ACS Applied Materials & Interfaces, 2023, 15(48): 56041-56048.
[24] TANAKA S, WATANABE Y, NAGASHIMA T, et al. Phthalate-derivative/TiO2-modified electrode for electrochromic application[J]. Solar Energy Materials and Solar Cells, 2009, 93(12): 2098-2101.
[25] PARASHAR R K, KANDPAL S, PAL N, et al. Coexistence of electrochromism and bipolar nonvolatile memory in a single viologen[J]. ACS Applied Materials & Interfaces, 2023, 15 (44): 51527-51537.
[26] ROBERT B, IOANNIS P, KOSALA W, et al. Electrochromic displays manufactured by a combination of vapor phase polymerization and screen printing[J]. Advanced Materials Technologies, 2022, 7(9): 2200054.
[27] FENG J F, WANG X Y, LUO Y, et al. Transparent-to-brown-black patterned electrochromic metal–organic frameworks[J]. ACS Applied Materials & Interfaces, 2024, 16(1): 1170-1178.
[28] DONG J X, CUI S C, WANG F, et al. Cu-MOF-derived Cu2V2O7@C nanofilm for electrochromic properties[J]. Ionics, 2024, 30(3): 1615-1625.
[29] SILORI G K, YU H F, HUANG Y J, et al. Fluorinated benzyl viologens for enhanced electrochromism and remarkable stability in electrochromic devices: An in-situ mass exchange probing through EQCM[J]. Solar Energy Materials and Solar Cells, 2023, 260: 112460.
[30] SILORI G K, THOKA S, HO K C. Morphological features of SiO2 nanofillers address poor stability issue in gel polymer electrolyte-based electrochromic devices[J]. ACS Applied Materials & Interfaces, 2023, 15(21): 25791-25805.
[31] DING Z H, CHEN H J, HAN Y Y, et al. Molecular engineering of π-extended viologens consisting of quinoxaline-based bridges for tunable electrochromic devices[J]. Journal of Molecular Structure, 2022, 1262: 133073.
[32] KAO S Y, KAWAHARA Y, NAKATSUJI S, et al. Achieving a large contrast, low driving voltage, and high stability electrochromic device with a viologen chromophore[J]. Journal of Materials Chemistry C, 2015, 3(14): 3266-3272.
[33] KUMAR A, JAMDEGNI M, KAUR A. Study of electrochromic behavior of the supporting electrolyte free electrochromic devices based on the graphene quantum dots functionalized viologens for energy-saving smart window application[J]. Synthetic Metals, 2022, 287: 117084.
[34] LIANG D L, GUO Z Y, SU Y Z, et al. Photochromic and electrochromic hydrogels based on electron donor and acceptor bridged viologen derivatives for multifunctional signage applications[J]. Advanced Materials Technologies, 2023, 8(17): 2300454.
[35] LING H, WU X W, LI K, et al. Air-stable, high contrast solution-phase electrochromic device based on an A-D-A viologen derivative[J]. Journal of Electroanalytical Chemistry, 2019, 851: 113447.
[36] CHOI Y J, KIM K W, YE R I, et al. Multicolor, dual-image, printed electrochromic displays based on tandem configuration[J]. Chemical Engineering Journal, 2022, 429: 132319.
[37] NACHIMUTHU S, SHIE W R, LIAW D J, et al. Theoretical study of electrochemical and electrochromic properties of novel viologen derivatives: Effects of donors and π-conjugation[J]. The Journal of Physical Chemistry B, 2019, 123(22): 4735-4744.
[38] ZHANG W J, ZHU C R, HUANG Z J, et al. Electrochromic 2,4,6-triphenyl-1,3,5-triazine based esters with electron donor-acceptor structure[J]. Organic Electronics, 2019, 67: 302-310.
[39] ARAKAWA Y, SHIBA T, IGAWA K. Selenium-linked cyanobiphenyl-based liquid crystal dimers: the effects of chalcogen linkage and spacer length on the twist-bend nematic phase[J]. Liquid Crystals, 2024, DOI: 10.1080/02678292.2024.2302981.
[40] RABARI M, KOLI C, PRAJAPATI A K. Synthesis, characterization, mesogenic properties, and DFT studies of unsymmetrical liquid crystalline dimers of biphenyl[J]. Soft Materials, 2024, 22(1): 1-12.
[41] JORDAO N, CABRITA L, PINA F, et al. Novel bipyridinium ionic liquids as liquid electrochromic devices[J]. Chemistry-A European Journal, 2014, 20(14): 3982-3988.
[42] PIBIRI I, BENEDUCI A, CARRARO M, et al. Mesomorphic and electrooptical properties of viologens based on non-symmetric alkyl/polyfluoroalkyl functionalization and on an oxadiazolyl-extended bent core[J]. Journal of Materials Chemistry C, 2019, 7(26): 7974-7983.
[43] BHOWMIK P K, NOORI O, CHEN S L, et al. Ionic liquid crystals: Synthesis and characterization via NMR, DSC, POM, X-ray diffraction and ionic conductivity of asymmetric viologen bistriflimide salts[J]. Journal of Molecular Liquids, 2021, 328: 115370.
[44] PAN M Y, ZHUO Q H, LIU J N, et al. Electrochromic materials containing pyridinium salt and benzoate moieties with dual-colored and long-life performance[J]. Solar Energy Materials and Solar Cells, 2022, 240: 111712.
[45] LIU S, HUANG Z J, LI F, et al. Star-shaped monosubstituted 2,6-diphenyl-4,4′-bipyridinium salts with good electrochromic switching stability[J]. Synthetic Metals, 2020, 262: 116330.
[46] YE W J, GUO X, ZHANG X J, et al. Multicolored and high optical contrast flexible electrochromic devices based on viologen derivatives[J]. Synthetic Metals, 2022, 287: 117076.
[47] RICHARD M, JOHN G. Progression from nano to macro science in soft matter systems: dimers to trimers and oligomers in twist-bend liquid crystals[J]. RSC Advances, 2016, 6(41): 34885-34893.
[48] FRIZON T, VIEIRA A, GIACOMELLI F, et al. Synthesis of cholesterol containing unsymmetrical dimers: a new series of liquid crystals[J]. Liquid Crystals, 2022, 49(5): 758-768.
[49] SCHILLING C, ZENS A, LASCHAT S. Novel liquid crystalline fluorene and fluorenone MIDA boronates: influence of alkyl vs alkoxy side chains on the mesomorphic properties[J]. Liquid Crystals, 2024, DOI: 10.1080/02678292.2024.2319626.
[50] ZHANG X Y, LIU M, LI F Y, et al. The influence of the side-arms structure on the properties of the liquid crystal dimers centred on mandelic acid[J]. Liquid Crystals, 2024, DOI: 10.1080/02678292.2024.2321474.

所在学位评定分委会
化学
国内图书分类号
TQ15
来源库
人工提交
成果类型学位论文
条目标识符//www.snoollab.com/handle/2SGJ60CL/779057
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
彭炜伦. 长链紫精类化合物的合成及其电致变色与液晶性质的研究[D]. 深圳. ,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132780-彭炜伦-材料科学与工程(18845KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[彭炜伦]的文章
百度学术
百度学术中相似的文章
[彭炜伦]的文章
必应学术
必应学术中相似的文章
[彭炜伦]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map