中文版 | English
题名

有机π共轭小分子的合成与光诊疗应用研究

其他题名
SYNTHESIS AND APPLICATION OF ORGANIC Π-CONJUGATED SMALL MOLECULES FOR PHOTOTHERANOSTICS
姓名
姓名拼音
WU Weitao
学号
12132083
学位类型
硕士
学位专业
070305 高分子化学与物理
学科门类/专业学位类别
07 理学
导师
田雷蕾
导师单位
材料科学与工程系
论文答辩日期
2024-05-09
论文提交日期
2024-07-06
学位授予单位
学位授予地点
深圳
摘要

有机π共轭分子是目前常用的光诊疗一体化材料,其中,电子电子给体(D-受体(A)型π共轭分子具有更强的分子内电荷转移效应和延伸到近红外区的吸收波长,可在更深的组织穿透距离实现光诊疗。D-Aπ共轭分子大多具有强疏水性,需用双亲嵌段聚合物包覆形成纳米粒子以增强生物相容性,而此时π共轭小分子以聚集态的形式存在,并由于分子间π-π相互作用表现出与单分子态不同的光物理性质。

我们设计合成了以噻二唑喹喔啉为受体基元,噻吩为π桥, N, N-二甲基苯胺为给体基元D-A-D型小分子TTQ-π-PA。通过在噻吩π桥上引入不同结构的侧链可以有效改变D-A基元之间的扭曲角度,进而改变分子的平面性。这些分子均呈现出局域激发(LE)与电荷转移(CT)杂化态,分子扭曲程度不同也导致LECT态所占比例不同,从而影响其荧光量子产率和光热转换效率。同时,更强的分子扭曲可以有效抑制分子间π-π堆积并提高荧光量子效率。最终,经筛选TTQ-π-PA2纳米粒子在量子产率0.5%与光热转换效率(52%)之间达到性能最优平衡,我们将其应用于荧光成像引导的光热治疗。

卤素相互作用是一类调控π共轭分子间π-π相互作用的分子间弱相互作用力。我们设计合成了氯和氟取代的A-D-A型分子i-7RBO-4Cli-7RBO-4F,在制备成纳米粒子形成聚集态后,引入的Cl元素可诱导形成Cl···S相互作用,使得i-7RBO-4Cl聚集态堆积更加紧密,荧光光谱红移且光热转换效率较高(81%)。因此,通过改变端基的卤素取代基团,我们获得了具有优异光热治疗效果的光诊疗材料。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] YU J, HE X, ZHANG Q, et al. Iodine Conjugated Pt(IV) Nanoparticles for Precise Chemotherapy with Iodine–Pt Guided Computed Tomography Imaging and Biotin-Mediated Tumor-Targeting[J]. ACS Nano, 2022, 16(4): 6835-6846.
[2] LAMMERS T, HENNINK W E, STORM G. Tumour-targeted nanomedicines: principles and practice[J]. British Journal of Cancer, 2008, 99(3): 392-397.
[3] HE S, JIANG Y, LI J, PU K. Semiconducting Polycomplex Nanoparticles for Photothermal Ferrotherapy of Cancer[J]. Angewandte Chemie International Edition, 2020, 59(26): 10633-10638.
[4] PANDIT S, DUTTA D, NIE S. Active transcytosis and new opportunities for cancer nanomedicine[J]. Nature Materials, 2020, 19(5): 478-480.
[5] LAMMERS T, AIME S, HENNINK W E, et al. Theranostic Nanomedicine[J]. Accounts of Chemical Research, 2011, 44(10): 1029-1038.
[6] PEER D, KARP J M, HONG S, et al. Nanocarriers as an emerging platform for cancer therapy[J]. Nature Nanotechnology, 2007, 2(12): 751-760.
[7] GAO M, YU F, LV C, et al. Fluorescent chemical probes for accurate tumor diagnosis and targeting therapy[J]. Chemical Society Reviews, 2017, 46(8): 2237-2271.
[8] LIU Y, BHATTARAI P, DAI Z, CHEN X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer[J]. Chemical Society Reviews, 2019, 48(7): 2053-2108.
[9] ZHA M, YANG G, LI Y, et al. Recent Advances in AIEgen-Based Photodynamic Therapy and Immunotherapy[J]. Advanced Healthcare Materials, 2021, 10(24): 2101066.
[10] VANKAYALA R, HWANG K C. Near-Infrared-Light-Activatable Nanomaterial-Mediated Phototheranostic Nanomedicines: An Emerging Paradigm for Cancer Treatment[J]. Advanced Materials, 2018, 30(23): 1706320.
[11] ZHU S, TIAN R, ANTARIS A L, et al. Near-Infrared-II Molecular Dyes for Cancer Imaging and Surgery[J]. Advanced Materials, 2019, 31(24): 1900321.
[12] YIN X, CHENG Y, FENG Y, et al. Phototheranostics for multifunctional treatment of cancer with fluorescence imaging[J]. Advanced Drug Delivery Reviews, 2022, 189: 114483.
[13] OWENS E A, HENARY M, EL FAKHRI G, et al. Tissue-Specific Near-Infrared Fluorescence Imaging[J]. Accounts of Chemical Research, 2016, 49(9): 1731-1740.
[14] GU Y, LAI H, CHEN Z-Y, et al. Chlorination-Mediated π–π Stacking Enhances the Photodynamic Properties of a NIR-II Emitting Photosensitizer with Extended Conjugation[J]. Angewandte Chemie International Edition, 2023, 62(25): e202303476.
[15] WANG L V, HU S. Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs[J]. Science, 2012, 335(6075): 1458-1462.
[16] WANG L V, YAO J. A practical guide to photoacoustic tomography in the life sciences[J]. Nature Methods, 2016, 13(8): 627-638.
[17] OVERCHUK M, WEERSINK R A, WILSON B C, ZHENG G. Photodynamic and Photothermal Therapies: Synergy Opportunities for Nanomedicine[J]. ACS Nano, 2023, 17(9): 7979-8003.
[18] CHU Y, XU X-Q, WANG Y. Ultradeep Photothermal Therapy Strategies[J]. The Journal of Physical Chemistry Letters, 2022, 13(41): 9564-9572.
[19] LI X, LOVELL J F, YOON J, CHEN X. Clinical development and potential of photothermal and photodynamic therapies for cancer[J]. Nature Reviews Clinical Oncology, 2020, 17(11): 657-674.
[20] BAPTISTA M S, CADET J, DI MASCIO P, et al. Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways[J]. Photochemistry and Photobiology, 2017, 93(4): 912-919.
[21] MO J, MAI LE N P, PRIEFER R. Evaluating the mechanisms of action and subcellular localization of ruthenium(II)-based photosensitizers[J]. European Journal of Medicinal Chemistry, 2021, 225: 113770.
[22] GIL H M, PRICE T W, CHELANI K, et al. NIR-quantum dots in biomedical imaging and their future[J]. iScience, 2021, 24(3): 102189.
[23] SU X, BAO Z, XIE W, et al. Precise Planar-Twisted Molecular Engineering to Construct Semiconducting Polymers with Balanced Absorption and Quantum Yield for Efficient Phototheranostics[J]. Research, 6: 0194.
[24] WEN G, LI X, ZHANG Y, et al. Effective Phototheranostics of Brain Tumor Assisted by Near-Infrared-II Light-Responsive Semiconducting Polymer Nanoparticles[J]. ACS Applied Materials & Interfaces, 2020, 12(30): 33492-33499.
[25] DAI Y, ZHAO H, HE K, et al. NIR-II Excitation Phototheranostic Nanomedicine for Fluorescence/Photoacoustic Tumor Imaging and Targeted Photothermal-Photonic Thermodynamic Therapy[J]. Small, 2021, 17(42): 2102527.
[26] SHI X, MENG H, SUN Y, et al. Far-Red to Near-Infrared Carbon Dots: Preparation and Applications in Biotechnology[J]. Small, 2019, 15(48): 1901507.
[27] XU X, RAY R, GU Y, et al. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments[J]. Journal of the American Chemical Society, 2004, 126(40): 12736-12737.
[28] FENG G, ZHANG G-Q, DING D. Design of superior phototheranostic agents guided by Jablonski diagrams[J]. Chemical Society Reviews, 2020, 49(22): 8179-8234.
[29] KANG H, HU S, CHO M H, et al. Theranostic nanosystems for targeted cancer therapy[J]. Nano Today, 2018, 23: 59-72.
[30] DAI H, WANG X, SHAO J, et al. NIR-II Organic Nanotheranostics for Precision Oncotherapy[J]. Small, 2021, 17(44): 2102646.
[31] CHEN C, OU H, LIU R, DING D. Regulating the Photophysical Property of Organic/Polymer Optical Agents for Promoted Cancer Phototheranostics[J]. Advanced Materials, 2020, 32(3): 1806331.
[32] LI J, PU K. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation[J]. Chemical Society Reviews, 2019, 48(1): 38-71.
[33] KENRY, DUAN Y, LIU B. Recent Advances of Optical Imaging in the Second Near-Infrared Window[J]. Advanced Materials, 2018, 30(47): 1802394.
[34] FENG G, LIU B. Multifunctional AIEgens for Future Theranostics[J]. Small, 2016, 12(47): 6528-6535.
[35] NG K K, ZHENG G. Molecular Interactions in Organic Nanoparticles for Phototheranostic Applications[J]. Chemical Reviews, 2015, 115(19): 11012-11042.
[36] CAO Y, WEI D, YANG L, et al. Nanoplatform Self-Assembly from Small Molecules of Porphyrin Derivatives for NIR-II Fluorescence Imaging Guided Photothermal-Immunotherapy[J]. Advanced Healthcare Materials, 2022, 11(11): 2102526.
[37] WANG F, ZHONG Y, BRUNS O, et al. In vivo NIR-II fluorescence imaging for biology and medicine[J]. Nature Photonics, 2024
[38] SHAO W, YANG C, LI F, et al. Molecular Design of Conjugated Small Molecule Nanoparticles for Synergistically Enhanced PTT/PDT[J]. Nano-Micro Letters, 2020, 12(1): 147.
[39] XU C, PU K. Second near-infrared photothermal materials for combinational nanotheranostics[J]. Chemical Society Reviews, 2021, 50(2): 1111-1137.
[40] HONG G, ANTARIS A L, DAI H. Near-infrared fluorophores for biomedical imaging[J]. Nature Biomedical Engineering, 2017, 1(1): 0010.
[41] MA D, BIAN H, GU M, et al. Recent advances in the design and applications of near-infrared II responsive small molecule phototherapeutic agents[J]. Coordination Chemistry Reviews, 2024, 505: 215677.
[42] LI Y, ZHOU Y, YUE X, et al. Cyanine conjugates in cancer theranostics[J]. Bioactive Materials, 2021, 6(3): 794-809.
[43] CHEN X, LI J, ROY S, et al. Development of Polymethine Dyes for NIR-II Fluorescence Imaging and Therapy[J]. Advanced Healthcare Materials, 2024, n/a(n/a): 2304506.
[44] LUBY B M, CHARRON D M, MACLAUGHLIN C M, ZHENG G. Activatable fluorescence: From small molecule to nanoparticle[J]. Advanced Drug Delivery Reviews, 2017, 113: 97-121.
[45] KAND D, LIU P, NAVARRO M X, et al. Water-Soluble BODIPY Photocages with Tunable Cellular Localization[J]. Journal of the American Chemical Society, 2020, 142(11): 4970-4974.
[46] DING C, REN T. Near infrared fluorescent probes for detecting and imaging active small molecules[J]. Coordination Chemistry Reviews, 2023, 482: 215080.
[47] TURKSOY A, YILDIZ D, AKKAYA E U. Photosensitization and controlled photosensitization with BODIPY dyes[J]. Coordination Chemistry Reviews, 2019, 379: 47-64.
[48] BUMAGINA N A, ANTINA E V. Review of advances in development of fluorescent BODIPY probes (chemosensors and chemodosimeters) for cation recognition[J]. Coordination Chemistry Reviews, 2024, 505: 215688.
[49] NGUYEN V-N, HA J, CHO M, et al. Recent developments ofBODIPY-based colorimetric and fluorescent probes for the detection of reactive oxygen/nitrogen species and cancer diagnosis[J]. Coordination Chemistry Reviews, 2021, 439: 213936.
[50] SAMANTA S, LAI K, WU F, et al. Xanthene, cyanine, oxazine and BODIPY: the four pillars of the fluorophore empire for super-resolution bioimaging[J]. Chemical Society Reviews, 2023, 52(20): 7197-7261.
[51] ZHANG T, MA C, SUN T, XIE Z. Unadulterated BODIPY nanoparticles for biomedical applications[J]. Coordination Chemistry Reviews, 2019, 390: 76-85.
[52] RAJORA M A, LOU J W H, ZHENG G. Advancing porphyrin's biomedical utility via supramolecular chemistry[J]. Chemical Society Reviews, 2017, 46(21): 6433-6469.
[53] ZHAO Y-Y, KIM H, NGUYEN V-N, et al. Recent advances and prospects in organic molecule-based phototheranostic agents for enhanced cancer phototherapy[J]. Coordination Chemistry Reviews, 2024, 501: 215560.
[54] PARK J M, HONG K-I, LEE H, JANG W-D. Bioinspired Applications of Porphyrin Derivatives[J]. Accounts of Chemical Research, 2021, 54(9): 2249-2260.
[55] LIU W, WANG Y-M, LI Y-H, et al. Fluorescent Imaging-Guided Chemotherapy-and-Photodynamic Dual Therapy with Nanoscale Porphyrin Metal–Organic Framework[J]. Small, 2017, 13(17): 1603459.
[56] LUCKY S S, SOO K C, ZHANG Y. Nanoparticles in Photodynamic Therapy[J]. Chemical Reviews, 2015, 115(4): 1990-2042.
[57] FERREIRA D P, CONCEIçãO D S, CALHELHA R C, et al. Porphyrin dye into biopolymeric chitosan films for localized photodynamic therapy of cancer[J]. Carbohydrate Polymers, 2016, 151: 160-171.
[58] ZHU Z-H, ZHANG D, CHEN J, et al. A biocompatible pure organic porous nanocage for enhanced photodynamic therapy[J]. Materials Horizons, 2023, 10(11): 4868-4881.
[59] GAO Y, LI Y, XU Z, et al. Multiporphyrinic architectures: Advances in structural design for photodynamic therapy[J]. Aggregate, 2024, 5(1): e420.
[60] TAN C, LI X, LI Z, et al. Near-infrared-responsive nanoplatforms integrating dye-sensitized upconversion and heavy-atom effect for enhanced photodynamic therapy efficacy[J]. Nano Today, 2024, 54: 102089.
[61] GRIMM J B, TKACHUK A N, PATEL R, et al. Optimized Red-Absorbing Dyes for Imaging and Sensing[J]. Journal of the American Chemical Society, 2023, 145(42): 23000-23013.
[62] GRIMM J B, TKACHUK A N, XIE L, et al. A general method to optimize and functionalize red-shifted rhodamine dyes[J]. Nature Methods, 2020, 17(8): 815-821.
[63] GRIMM J B, SUNG A J, LEGANT W R, et al. Carbofluoresceins and Carborhodamines as Scaffolds for High-Contrast Fluorogenic Probes[J]. ACS Chemical Biology, 2013, 8(6): 1303-1310.
[64] RONCALI J. Synthetic Principles for Bandgap Control in Linear π-Conjugated Systems[J]. Chemical Reviews, 1997, 97(1): 173-206.
[65] RONG X, XIA X, WANG R, et al. Near-infrared and highly photostable squaraine-based nanoparticles for photoacoustic imaging guided photothermal therapy[J]. Dyes and Pigments, 2023, 211: 111055.
[66] ILINA K, MACCUAIG W M, LARAMIE M, et al. Squaraine Dyes: Molecular Design for Different Applications and Remaining Challenges[J]. Bioconjugate Chemistry, 2020, 31(2): 194-213.
[67] YAO D, WANG Y, ZOU R, et al. Molecular Engineered Squaraine Nanoprobe for NIR-II/Photoacoustic Imaging and Photothermal Therapy of Metastatic Breast Cancer[J]. ACS Applied Materials & Interfaces, 2020, 12(4): 4276-4284.
[68] HUANG S, KANNADORAI R K, CHEN Y, et al. A narrow-bandgap benzobisthiadiazole derivative with high near-infrared photothermal conversion efficiency and robust photostability for cancer therapy[J]. Chemical Communications, 2015, 51(20): 4223-4226.
[69] CHEN Y, YU H, WANG Y, et al. Thiadiazoloquinoxaline derivative-based NIR-II organic molecules for NIR-II fluorescence imaging and photothermal therapy[J]. Biomaterials Science, 2022, 10(11): 2772-2788.
[70] CHEN Y, CHEN S, YU H, et al. D–A Type NIR-II Organic Molecules: Strategies for the Enhancement Fluorescence Brightness and Applications in NIR-II Fluorescence Imaging-Navigated Photothermal Therapy[J]. Advanced Healthcare Materials, 2022, 11(21): 2201158.
[71] GU H, LIU W, LI H, et al. 2,1,3-Benzothiadiazole derivative AIEgens for smart phototheranostics[J]. Coordination Chemistry Reviews, 2022, 473: 214803.
[72] YAN L, ZHANG H, AN Q, et al. Regioisomer-Free Difluoro-Monochloro Terminal-based Hexa-Halogenated Acceptor with Optimized Crystal Packing for Efficient Binary Organic Solar Cells[J]. Angewandte Chemie International Edition, 2022, 61(46): e202209454.
[73] LI M, LU Z, ZHANG J, et al. Near-Infrared-II Fluorophore with Inverted Dependence of Fluorescence Quantum Yield on Polarity as Potent Phototheranostics for Fluorescence-Image-Guided Phototherapy of Tumors[J]. Advanced Materials, 2023, 35(45): 2209647.
[74] LI L, SHAO C, LIU T, et al. An NIR-II-Emissive Photosensitizer for Hypoxia-Tolerant Photodynamic Theranostics[J]. Advanced Materials, 2020, 32(45): 2003471.
[75] LI C, JIANG G, YU J, et al. Fluorination Enhances NIR-II Emission and Photothermal Conversion Efficiency of Phototheranostic Agents for Imaging-Guided Cancer Therapy[J]. Advanced Materials, 2023, 35(3): 2208229.
[76] FENG Z, LI Y, CHEN S, et al. Engineered NIR-II fluorophores with ultralong-distance molecular packing for high-contrast deep lesion identification[J]. Nature Communications, 2023, 14(1): 5017.
[77] LIU L, WANG X, WANG L-J, et al. One-for-All Phototheranostic Agent Based on Aggregation-Induced Emission Characteristics for Multimodal Imaging-Guided Synergistic Photodynamic/Photothermal Cancer Therapy[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 19668-19678.
[78] SHAO W, WEI Q, WANG S, et al. Molecular engineering of D–A–D conjugated small molecule nanoparticles for high performance NIR-II photothermal therapy[J]. Materials Horizons, 2020, 7(5): 1379-1386.
[79] YANG Q, MA H, LIANG Y, DAI H. Rational Design of High Brightness NIR-II Organic Dyes with S-D-A-D-S Structure[J]. Accounts of Materials Research, 2021, 2(3): 170-183.
[80] AHN M, KIM M-J, CHO D W, WEE K-R. Electron Push–Pull Effects on Intramolecular Charge Transfer in Perylene-Based Donor–Acceptor Compounds[J]. The Journal of Organic Chemistry, 2021, 86(1): 403-413.
[81] QIAN G, DAI B, LUO M, et al. Band Gap Tunable, Donor−Acceptor−Donor Charge-Transfer Heteroquinoid-Based Chromophores: Near Infrared Photoluminescence and Electroluminescence[J]. Chemistry of Materials, 2008, 20(19): 6208-6216.
[82] CHEN S, PAN Y, CHEN K, et al. Increasing Molecular Planarity through Donor/Side-Chain Engineering for Improved NIR-IIa Fluorescence Imaging and NIR-II Photothermal Therapy under 1064 nm[J]. Angewandte Chemie International Edition, 2023, 62(6): e202215372.
[83] CUI J, ZHANG F, YAN D, et al. “Trojan Horse” Phototheranostics: Fine-Engineering NIR-II AIEgen Camouflaged by Cancer Cell Membrane for Homologous-Targeting Multimodal Imaging-Guided Phototherapy[J]. Advanced Materials, 2023, 35(33): 2302639.
[84] SONG S, ZHAO Y, KANG M, et al. Side-Chain Engineering of Aggregation-Induced Emission Molecules for Boosting Cancer Phototheranostics[J]. Advanced Functional Materials, 2021, 31(51): 2107545.
[85] LU B, QUAN H, ZHANG Z, et al. End Group Nonplanarization Enhances Phototherapy Efficacy of A–D–A Fused-Ring Photosensitizer for Tumor Phototherapy[J]. Nano Letters, 2023, 23(7): 2831-2838.
[86] LU B, XIA J, QUAN H, et al. End Group Engineering for Constructing A−D−A Fused-Ring Photosensitizers with Balanced Phototheranostics Performance[J]. Small, 2023, n/a(n/a): 2307664.
[87] ZHU Y, LAI H, GUO H, et al. Side-Chain-Tuned Molecular Packing Allows Concurrently Boosted Photoacoustic Imaging and NIR-II Fluorescence[J]. Angewandte Chemie International Edition, 2022, 61(15): e202117433.
[88] YIN B, QIN Q, LI Z, et al. Tongue cancer tailored photosensitizers for NIR-II fluorescence imaging guided precise treatment[J]. Nano Today, 2022, 45: 101550.
[89] QU J, CHEN H, ZHOU J, et al. Chlorine Atom-Induced Molecular Interlocked Network in a Non-Fullerene Acceptor[J]. ACS Applied Materials & Interfaces, 2018, 10(46): 39992-40000.
[90] WAN F, WANG H, GU Y, et al. Bromine Substitution Improves the Photothermal Performance of π-Conjugated Phototheranostic Molecules[J]. Chemistry – A European Journal, 2024, 30(5): e202303502.
[91] LIU Y, LIU J, CHEN D, et al. Fluorination Enhances NIR-II Fluorescence of Polymer Dots for Quantitative Brain Tumor Imaging[J]. Angewandte Chemie International Edition, 2020, 59(47): 21049-21057.
[92] HU W, PRASAD P N, HUANG W. Manipulating the Dynamics of Dark Excited States in Organic Materials for Phototheranostics[J]. Accounts of Chemical Research, 2021, 54(3): 697-706.
[93] WILLIAMS A T R, WINFIELD S A, MILLER J N. Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer[J]. Analyst, 1983, 108(1290): 1067-1071.
[94] TEODORESCU M, SECUIANU C. Refractive Indices Measurement and Correlation for Selected Binary Systems of Various Polarities at 25 °C[J]. Journal of Solution Chemistry, 2013, 42(10): 1912-1934.
[95] DHAMI S, MELLO A J D, RUMBLES G, et al. PHTHALOCYANINE FLUORESCENCE AT HIGH CONCENTRATION: DIMERS OR REABSORPTION EFFECT?[J]. Photochemistry and Photobiology, 1995, 61(4): 341-346.
[96] ROPER D K, AHN W, HOEPFNER M. Microscale Heat Transfer Transduced by Surface Plasmon Resonant Gold Nanoparticles[J]. The Journal of Physical Chemistry C, 2007, 111(9): 3636-3641.
[97] BENNETT R N, HENDSBEE A D, NGAI J H L, et al. Bisisoindigo–Benzothiadiazole Copolymers: Materials for Ambipolar and n-Channel OTFTs with Low Threshold Voltages[J]. ACS Applied Electronic Materials, 2020, 2(7): 2039-2048.
[98] DONG J, NIMORI S, GOTO H. Conjugated Polymer Films Having a Uniaxial Molecular Orientation and Network Structure Prepared by Electrochemical Polymerization in Liquid Crystals[J/OL] 2021, 13(15):10.3390/polym13152425
[99] FENG X J, WU P L, TAM H L, et al. Fluorene-Based π-Conjugated Oligomers for Efficient Three-Photon Excited Photoluminescence and Lasing[J]. Chemistry – A European Journal, 2009, 15(43): 11681-11691.
[100] HUANG S, WANG K, WANG S, et al. Highly Fluorescent Polycaprolactones with Tunable Light Emission Wavelengths across Visible to NIR Spectral Window[J]. Advanced Materials Interfaces, 2016, 3(17): 1600259.
[101] MURTO P, ELMAS S, MéNDEZ-ROMERO U A, et al. Highly Stable Indacenodithieno
[3,2-b]thiophene-Based Donor–Acceptor Copolymers for Hybrid Electrochromic and Energy Storage Applications[J]. Macromolecules, 2020, 53(24): 11106-11119.
[102] STECKLER T T, ABBOUD K A, CRAPS M, et al. Low band gap EDOT–benzobis(thiadiazole) hybrid polymer characterized on near-IR transmissive single walled carbon nanotube electrodes[J]. Chemical Communications, 2007(46): 4904-4906.
[103] DAI P-P, ZHU Y-Z, LIU Q-L, et al. Novel indeno
[1,2-b]indole-spirofluorene donor block for efficient sensitizers in dye-sensitized solar cells[J]. Dyes and Pigments, 2020, 175: 108099.
[104] LI S, YIN C, WANG R, et al. Second Near-Infrared Aggregation-Induced Emission Fluorophores with Phenothiazine Derivatives as the Donor and 6,7-Diphenyl-
[1,2,5]Thiadiazolo
[3,4-g]Quinoxaline as the Acceptor for In Vivo Imaging[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20281-20286.
[105] SCHMITT A, WAN Q, THOMPSON B C. Stereoregular pendant electroactive polymers with extended pendants via post-polymerization copper catalyzed azide-alkyne cycloaddition[J]. Journal of Polymer Science, 2023, 61(18): 2181-2187.
[106] JARVID M, JOHANSSON A, BJUGGREN J M, et al. Tailored side-chain architecture of benzil voltage stabilizers for enhanced dielectric strength of cross-linked polyethylene[J]. Journal of Polymer Science Part B: Polymer Physics, 2014, 52(16): 1047-1054.
[107] LIN Y, WANG J, ZHANG Z-G, et al. An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells[J]. Advanced Materials, 2015, 27(7): 1170-1174.
[108] FEI Z, EISNER F D, JIAO X, et al. An Alkylated Indacenodithieno
[3,2-b]thiophene-Based Nonfullerene Acceptor with High Crystallinity Exhibiting Single Junction Solar Cell Efficiencies Greater than 13% with Low Voltage Losses[J]. Advanced Materials, 2018, 30(8): 1705209.
[109] ZHAO W, LI S, YAO H, et al. Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells[J]. Journal of the American Chemical Society, 2017, 139(21): 7148-7151.

所在学位评定分委会
化学
国内图书分类号
O625
来源库
人工提交
成果类型学位论文
条目标识符//www.snoollab.com/handle/2SGJ60CL/779034
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
吴伟韬. 有机π共轭小分子的合成与光诊疗应用研究[D]. 深圳. ,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132083-吴伟韬-材料科学与工程(12086KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[吴伟韬]的文章
百度学术
百度学术中相似的文章
[吴伟韬]的文章
必应学术
必应学术中相似的文章
[吴伟韬]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map