中文版 | English
题名

功能配位杂化金属卤化物材料的合成及其光学性能研究

其他题名
SYNTHESIS AND OPTICAL PROPERTIES OF FUNCTIONAL COORDINATION HYBRID METAL HALIDE MATERIALS
姓名
姓名拼音
LI Ruiqian
学号
12132755
学位类型
硕士
学位专业
070301 无机化学
学科门类/专业学位类别
07 理学
导师
毛陵玲
导师单位
化学系
论文答辩日期
2024-05-08
论文提交日期
2024-07-05
学位授予单位
学位授予地点
深圳
摘要

金属卤化物钙钛矿 ABX3A 位和 B 位为阳离子,X 位为卤素阴离子)因其具有易于调节的能隙、高的吸收系数和高载流子迁移率等特性,在光电领域展现出广阔的应用前景。在三维金属卤化物钙钛矿中,通常存在稳定性较差的问题,使其在很多领域的应用受限,通过调整化合物的组分及结构以获得期望的性能与实际应用价值成为了很多科研人员的目标。可以向体系中引入较大尺寸的有机组分取代 A 位阳离子,实现对材料维度的调整。选用具有手性的有机阳离子或配体,通过将其引入金属卤化物体系中有望赋予材料独特的手性特性。替换 B 位金属阳离子的种类,例如引入过渡金属,可以制备对环境更友好的杂化金属卤化物。本论文基于以上可调控化合物结构和性能的策略,制备了四对具有强烈圆偏振发射的手性杂化碘化亚铜化合物和一系列具有一维、三维结构的双钙钛矿衍生物材料。由于手性有机配体的配位数和配位位置的不同,导致手性杂化碘化亚铜化合物的晶体结构和发光性能都有很大差异,单齿配体与 Cu 配位形成零维结构,双齿配体与 Cu 配位形成三维结构,光致发光量子产率最高可达 93-95%,通过改变手性双齿配体的类型,同时实现了圆偏振发光和可调节孔隙的结合。探索了双钙钛矿衍生物各组分改变对材料结构和性能的影响,并通过离子掺杂策略大幅提升了 In 基材料的光学性能,揭示了该体系中直接带隙半导体和间接带隙半导体对 Sb3+掺杂策略响应的差异性。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] FAKHARUDDIN A, GANGISHETTY M K, ABDI-JALEBI M, et al. Perovskite light-emitting diodes[J]. Nature Electronics, 2022, 5: 203-216.
[2] JENA A K, KULKARNI A, MIYASAKA T. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects[J]. Chemical Reviews, 2019, 119: 3036-3103.
[3] JIA P, LU M, SUN S, et al. Recent Advances in Flexible Perovskite Light‐Emitting Diodes[J]. Advanced Materials Interfaces, 2021, 8, 2100441.
[4] ZHANG M M, DONG X Y, WANG Z Y, et al. AIE Triggers the Circularly Polarized Luminescence of Atomically Precise Enantiomeric Copper(I) Alkynyl Clusters[J]. Angewandte Chemie International Edition, 2019, 59: 10052-10058.
[5] GE F, LI B H, CHENG P X, et al. Chiral Hybrid Copper(I) Halides for High Efficiency Second Harmonic Generation with a Broadband Transparency Window[J]. Angewandte Chemie International Edition, 2022, 61, e202115024.
[6] STUCKY G, D'AGOSTINO S, MCPHERSON G. Structural Properties of Tetramethylammonium-Tribromonickelate(II)[J]. Journal of the American Chemical Society, 1966, 88, 4828-4831.
[7] HAN S, LI M, LIU Y, et al. Tailoring of A Visible-Light-Absorbing Biaxial Ferroelectric towards Broadband Self-Driven Photodetection[J]. Nature Communications, 2021, 12, 284.
[8] MAO L, GUO P, KEPENEKIAN M, et al. Structural Diversity in White-Light-Emitting Hybrid Lead Bromide Perovskites[J]. Journal of the American Chemical Society, 2018, 140: 13078-13088.
[9] CONNOR B A, LEPPERT L, SMITH M D, et al. Layered Halide Double Perovskites: Dimensional Reduction of Cs2AgBiBr6[J]. Journal of the American Chemical Society, 2018, 140: 5235-5240.
[10] TRAN T T, QUINTERO M A, ARPINO K E, et al. Chemically Controlled Crystal Growth of (CH3NH3)2AgInBr6[J]. CrystEngComm, 2018, 20: 5929-5934.
[11] SUN S, LU M, GAO X, et al. 0D Perovskites: Unique Properties, Synthesis, and Their Applications[J]. Advanced Science, 2021, 8, 2102689.
[12] AHN J, LEE E, TAN J, et al. A New Class of Chiral Semiconductors: Chiral-Organic-Molecule-Incorporating Organic–Inorganic Hybrid Perovskites[J]. Materials Horizons, 2017, 4: 851-856.
[13] YUAN C, LI X, SEMIN S, et al. Chiral Lead Halide Perovskite Nanowires for Second-Order Nonlinear Optics[J]. Nano Letters, 2018, 18: 5411-5417.
[14] MAO L, GUO P, WANG S, et al. Design Principles for Enhancing Photoluminescence Quantum Yield in Hybrid Manganese Bromides[J]. Journal of the American Chemical Society, 2020, 142: 13582-13589.
[15] FU P, GENG S, MI R, et al. Achieving Narrowed Bandgaps and Blue‐Light Excitability in Zero‐Dimensional Hybrid Metal Halide Phosphors via Introducing Cation–Cation Bonding[J]. Energy & Environmental Materials, 2023, 7, e12518.
[16] ZHANG J, XIE M, XIN Y, et al. Organophosphine‐Sandwiched Copper Iodide Cluster Enables Charge Trapping[J]. Angewandte Chemie International Edition, 2021, 60: 24894-24900.
[17] TROYANO J, ZAMORA F, DELGADO S. Copper(I)‐Iodide Cluster Structures as Functional and Processable Platform Materials[J]. Chemical Society Reviews, 2021, 50: 4606-4628.
[18] LIU W, FANG Y, LI J. Copper Iodide Based Hybrid Phosphors for Energy‐Efficient General Lighting Technologies[J]. Advanced Functional Materials, 2018, 28, 1705593.
[19] BENITO Q, GOFF X F, MARON S, et al. Polymorphic Copper Iodide Clusters: Insights into the Mechanochromic Luminescence Properties[J]. Journal of the American Chemical Society, 2014, 136: 11311-11320.
[20] HEI X, TEAT S J, LI M, et al. Highly Soluble Copper(i) Iodide-based Hybrid Luminescent Semiconductors Containing Molecular and One-Dimensional Coordinated Anionic Inorganic Motifs[J]. Journal of Materials Chemistry C, 2023, 11: 3086-3094.
[21] ZHU K, CHENG Z, RANGAN S, et al. A New Type of Hybrid Copper Iodide as Nontoxic and Ultrastable LED Emissive Layer Material[J]. ACS Energy Letters, 2021, 6: 2565-2574.
[22] PENG R, LI M, LI D. Copper(I) halides: A Versatile Family in Coordination Chemistry and Crystal Engineering[J]. Coordination Chemistry Reviews, 2010, 254: 1-18.
[23] CHEN C, LI R, ZHU B, et al. Highly Luminescent Inks: Aggregation‐Induced Emission of Copper–Iodine Hybrid Clusters[J]. Angewandte Chemie International Edition, 2018, 57: 7106-7110.
[24] YAO L, NIU G, LI J, et al. Circularly Polarized Luminescence from Chiral Tetranuclear Copper(I) Iodide Clusters[J]. The Journal of Physical Chemistry Letters, 2020, 11: 1255-1260.
[25] FANG Y, LIU W, TEAT S J, et al. A Systematic Approach to Achieving High Performance Hybrid Lighting Phosphors with Excellent Thermal‐ and Photostability[J]. Advanced Functional Materials, 2016, 27, 1603444.
[26] LIU W, ZHU K, TEAT S J, et al. All-in-One: Achieving Robust, Strongly Luminescent and Highly Dispersible Hybrid Materials by Combining Ionic and Coordinate Bonds in Molecular Crystals[J]. Journal of the American Chemical Society, 2017, 139: 9281-9290.
[27] ZHANG N, HU H, QU L, et al. Overcoming Efficiency Limitation of Cluster Light-Emitting Diodes with Asymmetrically Functionalized Biphosphine Cu4I4 Cubes[J]. Journal of the American Chemical Society, 2022, 144: 6551-6557.
[28] ZHOU L, LIAO J, HUANG Z, et al. Intrinsic Self‐Trapped Emission in 0D Lead‐Free (C4H14N2)2In2Br10 Single Crystal[J]. Angewandte Chemie International Edition, 2019, 58: 15435-15440.
[29] ZHOU L, LIAO J, HUANG Z, et al. A Highly Red‐Emissive Lead‐Free Indium‐Based Perovskite Single Crystal for Sensitive Water Detection[J]. Angewandte Chemie International Edition, 2019, 58: 5277-5281.
[30] CHEN D, HAO S, ZHOU G, et al. Lead-Free Broadband Orange-Emitting Zero-Dimensional Hybrid (PMA)3InBr6 with Direct Band Gap[J]. Inorganic Chemistry, 2019, 58: 15602-15609.
[31] HAN P, LUO C, YANG S, et al. All‐Inorganic Lead‐Free 0D Perovskites by a Doping Strategy to Achieve a PLQY Boost from <2 % to 90 %[J]. Angewandte Chemie International Edition, 2020, 59: 12709-12713.
[32] CHENG X, LI R, ZHENG W, et al. Tailoring the Broadband Emission in All‐Inorganic Lead‐Free 0D In‐Based Halides through Sb3+ Doping[J]. Advanced Optical Materials, 2021, 9, 2100434.
[33] WU Y, SHI C, XU L, et al. Reversible Luminescent Vapochromism of a Zero-Dimensional Sb3+-Doped Organic–Inorganic Hybrid[J]. The Journal of Physical Chemistry Letters, 2021, 12: 3288-3294.
[34] MARTIN‐GARCIA B, SPIRITO D, LIN M, et al. Low‐Frequency Phonon Modes in Layered Silver‐Bismuth Double Perovskites: Symmetry, Polarity, and Relation to Phase Transitions[J]. Advanced Optical Materials, 2022, 10, 2200240.
[35] MUSCARELLA L A, HUTTER E M. Halide Double-Perovskite Semiconductors beyond Photovoltaics[J]. ACS Energy Letters, 2022, 7: 2128-2135.
[36] XIAO Z, SONG Z, YAN Y. From Lead Halide Perovskites to Lead‐Free Metal Halide Perovskites and Perovskite Derivatives[J]. Advanced Materials, 2019, 31, 1803792.
[37] DENG M, MUKTHAR N F M, SCHLEY N D, et al. Yellow Circularly Polarized Luminescence from C1‐Symmetrical Copper(I) Complexes[J]. Angewandte Chemie International Edition, 2019, 59: 1228-1231.
[38] WANG J, ZHOU H, YANG J, et al. Chiral Phosphine–Copper Iodide Hybrid Cluster Assemblies for Circularly Polarized Luminescence[J]. Journal of the American Chemical Society, 2021, 143: 10860-10864.
[39] LUO X Y, PAN M. Metal-Organic Materials with Circularly Polarized Luminescence[J]. Coordination Chemistry Reviews, 2022, 468, 214640.
[40] ZHAO T, HAN J, JIN X, et al. Enhanced Circularly Polarized Luminescence from Reorganized Chiral Emitters on the Skeleton of a Zeolitic Imidazolate Framework[J]. Angewandte Chemie International Edition, 2019, 131: 5032-5036.
[41] CHEN S M, CHANG L M, YANG X K, et al. Liquid-Phase Epitaxial Growth of Azapyrene-Based Chiral Metal–Organic Framework Thin Films for Circularly Polarized Luminescence[J]. ACS Applied Materials & Interfaces, 2019, 11: 31421-31426.
[42] SHANG W, ZHU X, LIANG T, et al. Chiral Reticular Self‐Assembly of Achiral AIEgen into Optically Pure Metal–Organic Frameworks (MOFs) with Dual Mechano‐Switchable Circularly Polarized Luminescence[J]. Angewandte Chemie International Edition, 2020, 59: 12811-12816.
[43] WANDERLEY M M, WANG C, WU C, et al. A Chiral Porous Metal–Organic Framework for Highly Sensitive and Enantioselective Fluorescence Sensing of Amino Alcohols[J]. Journal of the American Chemical Society, 2012, 134: 9050-9053.
[44] GAO P, JIANG Y, LIU H, et al. Pillar-Layer Chiral MOFs as a Crystalline Platform for Circularly Polarized Luminescence and Single-Phase White-Light Emission[J]. ACS Applied Materials & Interfaces, 2022, 14: 16435-16444.
[45] WANG S, MORGAN E E, VISHNOI P, et al. Tunable Luminescence in Hybrid Cu(I) and Ag(I) Iodides[J]. Inorganic Chemistry, 2020, 59: 15487-15494.
[46] XUAN H, LI J, XU L, et al. Circularly Polarized Luminescence based on 0D Lead‐Free Antimony (III) Halide Hybrids[J]. Advanced Optical Materials, 2022, 10, 2200591.
[47] WEI Y, LI C, LUO Z, et al. Circularly Polarized Luminescence from Zero‐Dimensional Hybrid Lead‐Tin Bromide with Near‐Unity Photoluminescence Quantum Yield[J]. Angewandte Chemie International Edition, 2022, 61, e202212685.
[48] WANG J, FANG C, MA J, et al. Aqueous Synthesis of Low-Dimensional Lead Halide Perovskites for Room-Temperature Circularly Polarized Light Emission and Detection[J]. ACS Nano, 2019, 13: 9473-9481.
[49] WEI F, DENG Z, SUN S, et al. The Synthesis, Structure and Electronic Properties of A Lead-Free Hybrid Inorganic–Organic Double Perovskite (MA)2KBiCl6 (MA = methylammonium)[J]. Materials Horizons, 2016, 3: 328-332.
[50] MAO L, TEICHER S M L, STOUMPOS C C, et al. Chemical and Structural Diversity of Hybrid Layered Double Perovskite Halides[J]. Journal of the American Chemical Society, 2019, 141: 19099-19109.
[51] HE L, XU K, SHI P, et al. A Rare 3D Hybrid Bimetal Halide Ferroelectric: (3-Hydroxypyrrolidinium)2RbBiBr6[J]. Science China Materials, 2022, 65: 2879-2883.
[52] BAI T, WANG X, WANG Z, et al. Highly Luminescent One‐Dimensional Organic–Inorganic Hybrid Double‐Perovskite‐Inspired Materials for Single‐Component Warm White‐Light‐Emitting Diodes[J]. Angewandte Chemie International Edition, 2022, 62, e202213240.
[53] MA M, CHEN J, LIU H, et al. A Review on Chiral Metal–Organic Frameworks: Synthesis and Asymmetric Applications[J]. Nanoscale, 2022, 14: 13405-13427.
[54] MAO L, STOUMPOS C C, KANATZIDIS M G. Two-Dimensional Hybrid Halide Perovskites: Principles and Promises[J]. Journal of the American Chemical Society, 2018, 141: 1171-1190.
[55] CHUNG I, LEE B, HE J, et al. All-Solid-State Dye-Sensitized Solar Cells with High Efficiency[J]. Nature, 2012, 485: 486-489.
[56] AHMADI M, WU T, HU B. A Review on Organic–Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics[J]. Advanced Materials, 2017, 29, 1625242.
[57] LIU X K, XU W, BAI S, et al. Metal Halide Perovskites for Light-Emitting Diodes[J]. Nature Materials, 2020, 20: 10-21.
[58] MAO L, CHEN J, VISHNOI P, et al. The Renaissance of Functional Hybrid Transition-Metal Halides[J]. Accounts of Materials Research, 2022, 3: 439-448.
[59] SMITH M D, CONNOR B A, KARUNADASA H I. Tuning the Luminescence of Layered Halide Perovskites[J]. Chemical Reviews, 2019, 119: 3104-3139.
[60] SUN C, DENG Z, LI Z, et al. Achieving Near‐unity Photoluminescence Quantum Yields in Organic‐Inorganic Hybrid Antimony (III) Chlorides with the [SbCl5] Geometry[J]. Angewandte Chemie International Edition, 2023, 62, e202216720.
[61] LI D, SONG J, XU Z, et al. Reversible Triple-Mode Switching in Photoluminescence from 0D Hybrid Antimony Halides[J]. Chemistry of Materials, 2022, 34: 6985-6995.
[62] JO H, CHEN X, LEE H, et al. Chiral Template‐Driven Macroscopic Chirality Control: Structure‐Second‐Harmonic Generation Properties Relationship[J]. European Journal of Inorganic Chemistry, 2020, 2021: 426-434.
[63] LIU H, ZHANG H, CHEN X, et al. Molecular Design Principles for Ferroelectrics: Ferroelectrochemistry[J]. Journal of the American Chemical Society, 2020, 142: 15205-15218.
[64] QIN Y, GAO F, QIAN S, et al. Multifunctional Chiral 2D Lead Halide Perovskites with Circularly Polarized Photoluminescence and Piezoelectric Energy Harvesting Properties[J]. ACS Nano, 2022, 16: 3221-3230.
[65] CHEN J, ZHANG S, PAN X, et al. Structural Origin of Enhanced Circularly Polarized Luminescence in Hybrid Manganese Bromides[J]. Angewandte Chemie International Edition, 2022, 61, e202205906.
[66] WANG B,WANG C, CHU Y, et al. Environmental-Friendly Lead-Free Chiral Mn-Based Metal Halides with Efficient Circularly Polarized Photoluminescence at Room Temperature[J]. Journal of Alloys and Compounds, 2022, 910, 164892.
[67] LONGHI G, CASTIGLIONI E, KOSHOUBU J, et al. Circularly Polarized Luminescence: A Review of Experimental and Theoretical Aspects[J]. Chirality, 2016, 28: 696-707.
[68] WONG H, LO W, YIM K, et al. Chirality and Chiroptics of Lanthanide Molecular and Supramolecular Assemblies[J]. Chem, 2019, 5: 3058-3095.
[69] FENG L, WANG J, MA T, et al. Biomimetic Non-Classical Crystallization Drives Hierarchical Structuring of Efficient Circularly Polarized Phosphors[J]. Nature Communications, 2022, 13, 3339.
[70] JI X, GENG S,ZHANG S, et al. Chiral 2D Cu(I) Halide Frameworks[J]. Chemistry of Materials, 2022, 34: 8262-8270.
[71] CHEN J, PAN X, ZHANG X, et al. One‐Dimensional Chiral Copper Iodide Chain‐Like Structure Cu4I4(R/S‐3‐quinuclidinol)3 with Near‐Unity Photoluminescence Quantum Yield and Efficient Circularly Polarized Luminescence[J]. Small, 2023, 19, 2300938.
[72] XIE M, HAN C, ZHANG J, et al. White Electroluminescent Phosphine-Chelated Copper Iodide Nanoclusters[J]. Chemistry of Materials, 2017, 29: 6606-6610.
[73] HOU Q, JIA M, ZHAO J, et al. Two New 3D Photoluminescence Metal–Organic Frameworks Based on Cubane Cu4I4 Clusters as Tetrahedral Nodes[J]. Inorganica Chimica Acta, 2012, 384: 287-292.
[74] LUO F, YAN C, DANG L, et al. UTSA-74: A MOF-74 Isomer with Two Accessible Binding Sites per Metal Center for Highly Selective Gas Separation[J]. Journal of the American Chemical Society, 2016, 138: 5678-5684.
[75] WANG S, MORGAN E E, PANUGANTI S, et al. Ligand Control of Structural Diversity in Luminescent Hybrid Copper(I) Iodides[J]. Chemistry of Materials, 2022, 34: 3206-3216.
[76] LIU Y, GONG Y, GENG S, et al. Hybrid Germanium Bromide Perovskites with Tunable Second Harmonic Generation[J]. Angewandte Chemie International Edition, 2022, 61, 202208875.
[77] YUE C, LIN N, GAO L, et al. Organic Cation Directed One-Dimensional Cuprous Halide Compounds: Syntheses, Crystal Structures and Photoluminescence Properties[J]. Dalton Transactions, 2019, 48: 10151-10159.
[78] KITAGAWA H, OZAWA Y, TORIUMI K. Flexibility of Cubane-Like Cu4I4 Framework: Temperature Dependence of Molecular Structure and Luminescence Thermochromism of [Cu4I4(PPh3)4] in Two Polymorphic Crystalline States[J]. Chemical Communications, 2010, 46, 6302-6304.
[79] YAN L, JANA M K, SERCEL P C, et al. Alkyl–Aryl Cation Mixing in Chiral 2D Perovskites[J]. Journal of the American Chemical Society, 2021, 143: 18114-18120.
[80] JIN Y, HAN Z, YAN B, et al. Cations Controlling the Chiral Assembly of Luminescent Atomically Precise Copper(I) Clusters[J]. Angewandte Chemie International Edition, 2019, 58: 12143-12148.
[81] HAN P, MAO X, YANG S, et al. Lead‐Free Sodium–Indium Double Perovskite Nanocrystals through Doping Silver Cations for Bright Yellow Emission[J]. Angewandte Chemie International Edition, 2019, 58: 17231-17235.
[82] YANG B, MAO X, HONG F, et al. Lead-Free Direct Band Gap Double-Perovskite Nanocrystals with Bright Dual-Color Emission[J]. Journal of the American Chemical Society, 2018, 140: 17001-17006.
[83] HE Q, ZHOU C, XU L, et al. Highly Stable Organic Antimony Halide Crystals for X-ray Scintillation[J]. ACS Materials Letters, 2020, 2: 633-638.
[84] LI J L, SANG Y F, XU L J, et al. Highly Efficient Light‐Emitting Diodes Based on an Organic Antimony(III) Halide Hybrid[J]. Angewandte Chemie International Edition, 2021, 61, e202113450.
[85] LAURITA Q, FABINI D H, STOUMPOS C C, et al. Chemical Tuning of Dynamic Cation Off-Centering in the Cubic Phases of Hybrid Tin and Lead Halide Perovskites[J]. Chemical Science, 2017, 8: 5628-5635.
[86] LAURITA Q, SESHADRI R. Chemistry, Structure, and Function of Lone Pairs in Extended Solids[J]. Accounts of Chemical Research, 2022, 55: 1004-1014.
[87] MCCALL K M, MORAD V, BENIN B M, et al. Efficient Lone-Pair-Driven Luminescence: Structure–Property Relationships in Emissive 5s2 Metal Halides[J]. ACS Materials Letters, 2020, 2: 1218-1232.
[88] JING Y, LIU Y, JIANG X, et al. Sb3+ Dopant and Halogen Substitution Triggered Highly Efficient and Tunable Emission in Lead-Free Metal Halide Single Crystals[J]. Chemistry of Materials, 2020, 32: 5327-5334.
[89] LI C, LUO Z, LIU Y, et al. Self‐Trapped Exciton Emission with High Thermal Stability in Antimony‐Doped Hybrid Manganese Chloride[J]. Advanced Optical Materials, 2022, 10, 2102746.
[90] VISHNOI P, ZUO J L, LI X, et al. Hybrid Layered Double Perovskite Halides of Transition Metals[J]. Journal of the American Chemical Society, 2022, 144: 6661-6666.
[91] CHEN D, HAO S, ZHOU G, et al. Broad Photoluminescence and Second-Harmonic Generation in the Noncentrosymmetric Organic–Inorganic Hybrid Halide (C6H5(CH2)4NH3)4MX7·H2O (M = Bi, In, X = Br or I) [J]. Chemistry of Materials, 2021, 33: 8106-8111.
[92] PANDEY S, NAIR A, ANDREWS A P, et al. 2,6‐Diisopropylanilinium Bromobismuthates[J]. European Journal of Inorganic Chemistry, 2016, 2017: 798-804.
[93] LI D, SUN Y, XU Z, et al. 0D Hybrid Indium Halides with Highly Efficient Intrinsic Broadband Light Emissions[J]. Chemical Communications, 2022, 58: 9084-9087.
[94] LI Z, LI Y, LIANG P, et al. Dual-Band Luminescent Lead-Free Antimony Chloride Halides with Near-Unity Photoluminescence Quantum Efficiency[J]. Chemistry of Materials, 2019, 31: 9363-9371.
[95] NOCULAK A, MORAD V, MCCALL K M, et al. Bright Blue and Green Luminescence of Sb(III) in Double Perovskite Cs2MInCl6 (M = Na, K) Matrices[J]. Chemistry of Materials, 2020, 32: 5118-5124.
[96] ZHOU J, XIE P, WANG C, et al. Hybrid Double Perovskite Derived Halides Based on Bi and Alkali Metals (K, Rb): Diverse Structures, Tunable Optical Properties and Second Harmonic Generation Responses[J]. Angewandte Chemie International Edition, 2023, 62, e202307646.
[97] CHEN X, ZHANG X, LIU D, et al. Room-Temperature Ferroelectric and Ferroelastic Orders Coexisting in A New Tetrafluoroborate-Based Perovskite[J]. Chemical Science, 2021, 12: 8713-8721.
[98] XU W, LI P, TANG Y, et al. A Molecular Perovskite with Switchable Coordination Bonds for High-Temperature Multiaxial Ferroelectrics[J]. Journal of the American Chemical Society, 2017, 139: 6369-6375.
[99] ZHANG H, ZHANG N, ZHANG Y, et al. Ferroelectric Phase Transition Driven by Switchable Covalent Bonds[J]. Physical Review Letters, 2023, 130, 176802.
[100]XU W, ROMANYUK K, ZENG Y, et al. Statics and Dynamics of Ferroelectric Domains in Molecular Multiaxial Ferroelectric (Me3NOH)2[KCo(CN)6][J]. Journal of Materials Chemistry C, 2021, 9: 10741-10748.
[101]HE L, XU K, SHI P, et al. Coexisting Ferroelectric and Ferroelastic Orders in Rare 3D Homochiral Hybrid Bimetal Halides[J]. Chemistry of Materials, 2021, 33: 6233-6239.
[102]WANG C, WANG N, SHI G, et al. NH4+/K+-Substitution-Induced C–F–K Coordination Bonds for Designing the Highest-Temperature Hybrid Halide Double Perovskite Ferroelastic[J]. Chinese Chemical Letters, 2023, 34, 107774.

所在学位评定分委会
化学
国内图书分类号
O614
来源库
人工提交
成果类型学位论文
条目标识符//www.snoollab.com/handle/2SGJ60CL/779029
专题理学院_化学系
推荐引用方式
GB/T 7714
李瑞倩. 功能配位杂化金属卤化物材料的合成及其光学性能研究[D]. 深圳. ,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132755-李瑞倩-化学系.pdf(8313KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李瑞倩]的文章
百度学术
百度学术中相似的文章
[李瑞倩]的文章
必应学术
必应学术中相似的文章
[李瑞倩]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map