中文版 | English
题名

纳米复合调控纳米导电细丝提升忆阻器性能研究

其他题名
IMPROVING THE PERFORMANCE OF MEMRISTOR BY NANOCOMPOSITE-CONTROLLED CONDUCTIVE NANOFILAMENTS
姓名
姓名拼音
SONG Jiahao
学号
12132067
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
黎长建
导师单位
材料科学与工程系
论文答辩日期
2024-05-16
论文提交日期
2024-07-05
学位授予单位
学位授予地点
深圳
摘要

当今大数据时代,对计算和存储技术的要求日益提高,特别是在高密度存储和高计算能力方面。然而,传统的冯·诺依曼架构的存储与计算分离存在固有弊端,并且随着摩尔定律接近其理论极限,这些局限性进一步阻碍了计算机技术的发展。忆阻器作为一种创新的非易失性存储技术,通过模拟人类大脑神经突触的功能,为构建未来人工智能系统提供了关键的物理基础。它在实现高密度存储和低功耗操作,以及推动神经形态计算领域的发展上,展现了巨大的潜力,因此受到了科研与工业界的广泛关注。

虽然忆阻器技术在理论研究和实验探索方面已经取得了显著成就,但在推向实际系统应用时,它仍面临若干关键技术挑战,特别是在器件循环稳定性和多个器件间的一致性方面。忆阻器低阻态与高阻态受其内部纳米导电细丝动态变化的直接影响,纳米导电细丝的不稳定生成与断裂造成器件循环性能离散度大,纳米导电细丝的不均匀导致器件之间离散度大。

本研究聚焦于纳米导电细丝的可控性研究,通过纳米复合,调控优化忆阻器纳米导电细丝导通/断裂的稳定性与分布均匀性,增强忆阻器的循环稳定性和器件间的性能均一性,以推动其在高密度存储与神经形态计算中的应用。具体研究内容如下:

(1)通过自组装生长方式,构建周期性分布的纳米柱结构,即钛酸钡基质中嵌入镍元素纳米柱的结构,利用镍元素纳米柱的金属镍与氧化镍相变,提升纳米导电细丝的导通/断裂的可控性以及导电细丝分布的均匀性,提升器件循环稳定特性及均一性。最终实现对忆阻器器件稳定性(低阻态与高阻态离散度分别为:13%9%)和均一性的提升(低阻态与高阻态离散度分别为:44%99%)

(2)构建钛酸钡与氧化镍超晶格,实现对纳米导电细丝的多点控制,通过多点随机性生长/断裂过程增加纳米导电细丝的整体导通/断裂的可控性。纳米导电细丝生成过程中,需要跨越超晶格界面势垒,而界面处的势垒会阻碍纳米导电细丝的生成,这使部分不稳定的迁移路径被阻断,只允许部分稳定的纳米导电细丝生成并主导开关过程,实现纳米导电细丝的导通/断裂的稳定化,进一步提升器件的循环稳定性,低阻态与高阻态离散度分别为:22%9%)。多层堆叠的方式,利用统计学中的中心极限定理,实现多个器件之间的纳米导电细丝均匀化,进而提升多个器件的均一性(低阻态与高阻态离散度分别为:39%23%)

本研究采用了纳米复合技术,构建纳米柱复合结构和超晶格复合结构来实现忆阻器内的纳米导电细丝的可控化,提升纳米导电细丝的稳定性以及均一性,从而有效提高了单个器件的循环稳定性以及多个器件的均一性,为忆阻器性能调控提供新的思路。

其他摘要

In the information technology era, the demands for computing and storage technologies are rapidly increasingly, especially in high-density memory and computing. However, the traditional von Neumann architecture, due to the separation of storage and computation unit, exhibits inherent limitations in the advancement of computing technology, particularly as Moore’s law approaches its theoretical limit. To counter this backdrop, memristors emerge as an innovative non-volatile memory technology that emulates the functions of human brain synapses, offering a critical physical foundation for developing future artificial intelligence systems. Their potential for high-density storage and low-energy operations, alongside their role in advancing neuromorphic computing, has garnered widespread attention in the science and industry.

Despite significant progress in the theoretical and experimental exploration of memristor technology, several key technical challenges persist in transitioning to practical system applications, especially concerning device cyclic stability and device-to-device variation across multiple devices. The performance of memristors is heavily influenced by the dynamics of conductive filaments, whose random growth and rupture contribute to variations in device performance and hinder the application of large-scale memristor crossbar arrays.

This thesis concentrates on the controllability of conductive nanofilaments, aiming to enhance the cycle stability and uniformity of memristor devices by precisely controlling the formation and rupture processes through nano-composite techniques. The main research content includes:

(1) Through self-assembly growth to construct aperiodic array of nanocolumn structure, the structure of nickel element nanocolumns embedded in barium titanate matrix, Utilizing the phase transition between metallic nickel and nickel oxide within the nickel element nanocolumns to enhance the controllability of filament formation/breakdown ,as well as the uniformity of filament distribution, ultimately enhancing the stability and uniformity of memristor devices (Low resistance state and High resistance state cyclic stability dispersion reduced to 13% and 9%, and device to device variation reduced to 44% and 99%).

(2) Constructing a barium titanate and nickel oxide superlattice enables multi-point control over the formation/breakdown of conductive filaments. This control is realized through the random growth/rupture processes at multiple points, enhancing the controllability of filament formation/breakdown. As filaments attempt to form across superlattice interfaces, they encounter barriers that impede the migration of oxygen vacancies, blocking unstable migration paths and allowing only stable conductive pathways to emerge. This mechanism further enhances device cyclic stability (Low resistance state and High resistance state cyclic stability dispersion reduced to 22% and 9%). The multi-layer stacking approach, aligned with the Central Limit Theorem from statistics, ensures uniformity among device conductive filaments, thereby improving device-to-device uniformity (Low resistance state and High resistance state device uniformity dispersion reduced to 39% and 23%).

This study employed nano-composite technology to construct composite structures of nanorods and superlattice, we achieve controlled conductive nanofilament formation/rupture and uniform distribution within memristors, significantly enhancing filament stability and uniformity. Through this strategy, we not only improve the cyclic stability of individual devices but also the uniformity across multiple devices, offering new approach to improve memristor performance.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] Zidan M A, Strachan J P, Lu W D. The future of electronics based on memristive systems[J]. Nature Electronics, 2018, 1(1): 22-29.
[2] Moore G E. Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp. 114 ff[J]. IEEE Solid-state Circuits Society Newsletter, 2006, 11(3): 33 -35.
[3] Holt W M. 1.1 Moore's law: A path going forward[C]//2016 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2016: 8 -13
[4] Maass W. Networks of spiking neurons: the third generation of neural network models[J]. Neural Networks, 1997, 10(9): 1659 -1671.
[5] Eliasmith C, Stewart T C, Choo X, et al. A large -scale model of the functioning brain[J]. Science, 2012, 338(6111): 1202-1205.
[6] Markram H. The blue brain project[J]. Nature Reviews Neuroscience, 2006, 7(2): 153-160.
[7] Silver D, Huang A, Maddison C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484 -489.
[8] Chua L. Memristor-the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507 -519.
[9] 殷明慧, 杨玉超, 黄如. 神经形态器件现状与未来[J]. 国防科技, 2016, 37(6): 23-30.
[10] Merolla P A, Arthur J V, Alvarez -Icaza R, et al. A million spiking -neuron integrated circuit with a scalable communication network and interface[J]. Science, 2014, 345(6197): 668-673.
[11] Zhao M, Gao B, Tang J, et al. Reliability of analog resistive switching memory for neuromorphic computing[J]. Applied Physics Reviews, 2020, 7(1).
[12] Zahoor F, Azni Zulkifli T Z, Khanday F A. Resistive random access memory (RRAM): an overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications[J]. Nanoscale Research Letters, 2020, 15: 1-26.
[13] Ielmini D. Resistive switching memories based on metal oxides: mechanisms, reliability and scaling[J]. Semiconductor Science and Technology, 2016, 31(6): 063002.
[14] Yan X, Pei Y, Chen H, et al. Self‐assembled networked PbS distribution quantum dots for resistive switching and artificial synapse performance boost of memristors[J]. Advanced Materials, 2019, 31(7): 1805284.
[15] Liu S H, Yang W L, Wu C C, et al. High -performance polyimide -based ReRAM for nonvolatile memory application[J]. IEEE Electron Device Letters, 2012, 34(1): 123-125.
[16] Chen Y Y, Goux L, Clima S, et al. Endurance/Retention Trade -off on HfO2 /Metal Cap 1T1R Bipolar RRAM[J]. IEEE Transactions on Electron Devices, 2013, 60(3): 1114-1121.
[17] Zhang W, Gao B, Tang J, et al. Neuro -inspired computing chips[J]. Nature Electronics, 2020, 3(7): 371 -382.
[18] 张美芸. 阻变存储器参数离散性及阻变机制研究 [D]; 中国科学院大学, 2017.
[19] Park J, Jo M, Lee J, et al. Improved switching uniformity and speed in filament-type RRAM using lightning rod effect[J]. IEEE Electron Device LLetters, 2010, 32(1): 63-65.
[20] Wang Z Q, Xu H Y, Zhang L, et al. Performance improvement of resistive switching memory achieved by enhancing local-electric-field near electromigrated Ag-nanoclusters[J]. Nanoscale, 2013, 5(10): 4490 -4494.
[21] Ambrogio S, Narayanan P, Tsai H, et al. Equivalent-accuracy accelerated neural-network training using analogue memory[J]. Nature, 2018, 558(7708): 60-67.
[22] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[23] 李迎晨. 以 Ru 为底电极的 TaOx 基阻变存储器性能优化的研究 [D], 2022.
[24] Choi S, Tan S H, Li Z, et al. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations[J]. Nature Materials, 2018, 17(4): 335-340.
[25] Jeong D S, Thomas R, Katiyar R S, et al. Emerging memories: resistive switching mechanisms and current status[J]. Reports on Progress in Physics, 2012, 75(7): 076502.
[26] Wang C, Mao G Q, Huang M, et al. HfOx /AlOy Superlattice‐Like Memristive Synapse[J]. Advanced Science, 2022, 9(21): 2201446.
[27] 赵迪扬. NiO 薄膜电阻开关效应的机制研究 [D]; 清华大学, 2017.
[28]Kwon D H, Kim K M, Jang J H, et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory[J]. Nature Nanotechnology, 2010, 5(2): 148-153.
[29] Wang W, Yin F, Niu H, et al. Tantalum pentoxide (Ta 2O5 and Ta 2O5 - x )-based memristor for photonic in-memory computing application[J]. Nano Energy, 2023, 106: 108072.
[30] Lim E W, Ismail R. Conduction mechanism of valence change resistive switching memory: A survey[J]. Electronics, 2015, 4(3): 586 -613.
[31] Luo Y, Zhao D, Zhao Y, et al. Evolution of Ni nanofilaments and electromagnetic coupling in the resistive switching of NiO[J]. Nanoscale, 2015, 7(2): 642-649.
[32] Li M, Zhou J, Jing X, et al. Controlling resistance switching polarities of epitaxial BaTiO3 films by mediation of ferroelectricity and oxygen vacancies[J]. Advanced Electronic Materials, 2015, 1(6): 1500069.
[33] Li T, Yu H, Chen S H Y, et al. The strategies of filament control for improving the resistive switching performance[J]. Journal of Materials Chemistry C, 2020, 8(46): 16295-16317.
[34] Kim H D, Yun M J, Hong S M, et al. Effect of nanopyramid bottom electrodes on bipolar resistive switching phenomena in nickel nitride films-based crossbar arrays[J]. Nanotechnology, 2014, 25(12): 125201.
[35] 李立业. 基于碳量子点/PMMA 复合薄膜的阻变器件制备及其性能研究 [D], 2022.
[36] Liu Q, Long S, Lv H, et al. Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode[J]. ACS nano, 2010, 4(10): 6162 -6168.
[37] Shin K Y, Kim Y, Antolinez F V, et al. Controllable formation of nanofilaments in resistive memories via tip‐enhanced electric fields[J]. Advanced Electronic Materials, 2016, 2(10): 1600233.
[38] Hennes M, Schuler V, Weng X, et al. Growth of vertically aligned nanowires in metal–oxide nanocomposites: kinetic Monte -Carlo modeling versus experiments[J]. Nanoscale, 2018, 10(16): 7666 -7675.
[39] Weng X, Hennes M, Coati A, et al. Ultrathin Ni nanowires embedded in SrTiO3 : Vertical epitaxy, strain relaxation mechanisms, and solid -state amorphization[J]. Physical Review Materials, 2018, 2(10): 106003.
[40] Yan X, He H, Liu G, et al. A robust memristor based on epitaxial vertically aligned nanostructured BaTiO3− CeO2 films on silicon[J]. Advanced Materials, 2022, 34(23): 2110343.
[41] Lee J, Bourim E M, Lee W, et al. Effect of ZrOx /HfOx bilayer structure on switching uniformity and reliability in nonvolatile memory applications[J]. Applied Physics Letters, 2010, 97(17).
[42] Chand U, Huang K C, Huang C Y, et al. Investigation of thermal stability and reliability of HfO2 based resistive random access memory devices with cross￾bar structure[J]. Journal of Applied Physics, 2015, 117(18).
[43] Ismail M, Nisa S U, Rana A M, et al. Enhancement of resistive switching performance by introducing a thin non -stoichiometric CeO2 - x switching layer in TiO2 -based resistive random access memory[J]. Applied Physics Letters, 2019, 114(1).
[44] Goul R, Marshall A, Seacat S, et al. Atomic -scale tuning of ultrathin memristors[J]. Communications Physics, 2022, 5(1): 260.
[45] Wang Z, Rao M, Midya R, et al. Threshold switching of Ag or Cu in dielectrics: materials, mechanism, and applications[J]. Advanced Functional Materials, 2018, 28(6): 1704862.
[46] 高超. 石墨烯氧化物量子点改善忆阻器的性能及应用研究 [D]; 河北大学, 2021.
[47] Lowndes D H, Geohegan D B, Puretzky A A, et al. Synthesis of novel thin -film materials by pulsed laser deposition[J]. Science, 1996, 273(5277): 898 -903.
[48] Rosenfeld G, Poelsema B, Comsa G. Epitaxial growth modes far from equilibrium[M]//The Chemical Physics of Solid Surfaces. Elsevier, 1997, 8: 66-101.
[49] Kawasaki M, Takahashi K, Maeda T, et al. Atomic control of the SrTiO 3 crystal surface[J]. Science, 1994, 266(5190): 1540 -1542.
[50] Koster G, Kropman B L, Rijnders G J H M, et al. Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide[J]. Applied Physics Letters, 1998, 73(20): 2920-2922.
[51] Bozovic I, Eckstein J N. Analysis of growing films of complex oxides by RHEED[J]. Mrs Bulletin, 1995, 20(5): 32 -38.
[52] Pulsed Laser Deposition [Z]. Department of Physics, Florida State University, Tallahassee,; Beekman
[53] Blank D H A, Rijnders G J H M, Koster G, et al. In -situ monitoring during pulsed laser deposition using RHEED at high pressure[J]. Applied Surface Science, 1998, 127: 633-638.
[54] Zhang H, Huang J, Wang Y, et al. Atomic force microscopy for two -dimensional materials: A tutorial review[J]. Optics Communications, 2018, 406: 3-17.
[55] Hinterdorfer P, Dufrêne Y F. Detection and localization of single molecular recognition events using atomic force microscopy[J]. Nature MMethods, 2006, 3(5): 347-355.
[56] Harrington G F, Santiso J. Back -to-Basics tutorial: X-ray diffraction of thin films[J]. Journal of Electroceramics, 2021, 47(4): 141 -163.
[57] Khan M, Mishra A, Shukla J, et al. X-ray analysis of BaTiO3 ceramics by Williamson-Hall and size strain plot methods[C]//AIP Conference Proceedings. AIP Publishing, 2019, 2100(1).
[58] Tarditi A M, Barroso N, Galetti A E, et al. XPS study of the surface properties and Ni particle size determination of Ni‐supported catalysts[J]. Surface and Interface Analysis, 2014, 46(8): 521 -529.
[59] Zhang Z, Matsubayashi A, Grisafe B, et al. Characterization of magnetic Ni clusters on graphene scaffold after high vacuum annealing[J]. Materials Chemistry and Physics, 2016, 170: 175 -179.
[60] Al-Ghamdi A A, Mahmoud W E, Yaghmour S J, et al. Structure and optical properties of nanocrystalline NiO thin film synthesized by sol –gel spincoating method[J]. Journal of Alloys and Compounds, 2009, 486(1-2): 9-13.
[61] Park S O, Hong S, Sung S J, et al. Phase -change memory via a phase -changeable self-confined nano-filament[J]. Nature, 2024: 1 -6.
[62] Zotov A V, Sirotkin V V, Il'in A I, et al. Multilevel memristive structures based on bismuth selenide microcrystals[J]. Chaos, Solitons & Fractals, 2021, 143: 110542.
[63] Chen S, Mahmoodi M R, Shi Y, et al. Wafer-scale integration of twodimensional materials in high -density memristive crossbar arrays for artificial neural networks[J]. Nature Electronics, 2020, 3(10): 638 -645.
[64] Kumar S, Gautam M K, Gill G S, et al. 3 -D physical electro-thermal modeling of nanoscale Y2O3 memristors for synaptic application[J]. IEEE Transactions on Electron Devices, 2022, 69(6): 3124 -3129.
[65] Tang B, Veluri H, Li Y, et al. Wafer-scale solution-processed 2D material analog resistive memory array for memory -based computing[J]. Nature Communications, 2022, 13(1): 3037.
[66] Li Y, Xiong Y, Zhai B, et al. Ag-doped non–imperfection-enabled uniform memristive neuromorphic device based on van der Waals indium phosphorus sulfide[J]. Science Advances, 2024, 10(11): eadk9474.

所在学位评定分委会
材料科学与工程
国内图书分类号
0484
来源库
人工提交
成果类型学位论文
条目标识符//www.snoollab.com/handle/2SGJ60CL/779027
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
宋家豪. 纳米复合调控纳米导电细丝提升忆阻器性能研究[D]. 深圳. ,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132067-宋家豪-材料科学与工程(8087KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[宋家豪]的文章
百度学术
百度学术中相似的文章
[宋家豪]的文章
必应学术
必应学术中相似的文章
[宋家豪]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map