中文版 | English
题名

手性螺环双吲哚骨架的催化不对称构建及其应用研究

其他题名
CATALYTIC ASYMMETRIC CONSTRUCTION AND APPLICATION STUDIES OF SPIROBISINDOLE SKELETON
姓名
姓名拼音
ZHAO Haowen
学号
12132824
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
向少华
导师单位
前沿与交叉科学研究院
论文答辩日期
2024-05-15
论文提交日期
2024-07-04
学位授予单位
学位授予地点
深圳
摘要

1,1’-螺二氢茚的类似物(类SPINOL)广泛应用于催化不对称与材料等领域。随着该类骨架的合成以及应用不断被报道,人们发现在这类螺环骨架中引入杂原子会改变其二面角以及螯合基团的空间位置,从而影响其衍生物的催化活性。

然而,目前含杂原子的螺环骨架类型较少,需要复杂的合成路线与繁琐的手性拆分步骤。同时,杂原子存在于螺环上,难以引入并且稳定性有限。通过杂芳环在螺环中引入杂原子的构建方法与应用研究有限,杂芳环碳螺环骨架的性质尚未开发。吲哚是自然界丰富的杂原子芳烃,在催化不对称领域应用广泛,因此利用不对称催化的方式构建光学纯的螺环吲哚化合物具有一定的科学价值。

近年来,双吲哚化合物因其优异的生物活性,在生物以及材料领域取得卓著的成果,手性螺环双吲哚化合物的开发有着丰富的应用前景。本文筛选不同的醛基吲哚,以4-醛基吲哚作为起始原料,经过两步合成双螺环吲哚的环化前体。通过对催化剂的筛选与改造,探究了影响底物反应速率以及实现优异对映选择性控制的关键因素。最终在手性磷酸(CPA)的催化下,首次构建了轴手性螺环吲哚4,4’,5,5’-四氢螺苯并吲哚骨架(SBENDOLE),并且进行了对称与非对称类型的底物进行了拓展。包括烷基、芳基以及杂环取代基,以中等偏上的收率及优异的对映选择性得到对应的螺环双吲哚化合物,验证了该方法的底物普适性 (14 examples, up to 97% yield, 99% ee)。

本文后半部分初步研究了SBENDOLE的应用价值,通过溴取代以及硫取代的反应验证了SBENDOLE具有与吲哚类似的化学性质。并由该骨架衍生出不同种类的手性催化剂以及配体,例如手性硫脲,手性膦氧化合物等。值得注意地是,在该类螺环骨架的基础上合成了多环芳烃的手性荧光分子,具有良好的CPL性质以及量子荧光效率。这些证明了SBENDOLE骨架在材料以及催化领域有潜在的应用前景,此外SBENDOLE骨架作为轴手性螺环双吲哚甲烷分子,本身在生物医药,尤其是抗癌药物的研发领域具有巨大的价值。上述因素使SBENDOLE具备成为手性双吲哚“平台分子”的潜力。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] Tan B, et al. Recent Advances in Catalytic Asymmetric Construction of Atropisomers[J]. Chemical Reviews. 2021, 121(8): 4805-4902.
[2] VON B A, et al. Systematik und Nomenclatur Bicyclischer Kohlenwasserstoffe[J]. Berichte der Deutschen Chemischen Gesellschaft. 1900, 33: 3771-3775.
[3] ARVIND K, et al. A Novel Chiral Auxiliary from Chiral Spiranes. cis-(+)-and(–)-Spiro
[4,4]nonane-1,6-diol as Chiral Modifier in Lithium Aluminium Hydride Reduction of Phenyl Alkyl Ketones[J]. Journal of the Chemical Society, Chemical Communications. 1992, 6: 493-494.
[4] CHAN A C, et al. Novel Spiro Phosphinite Ligands and Their Application in Homogeneous Catalytic Hydrogenation Reactions[J]. Journal of the American Chemical Society. 1997, 119(40): 9570-9571.
[5] SASAI H, et al. Design and Synthesis of the First SpiroBis(isoxazoline) Derivatives as Asymmetric Ligands[J]. Organic Letters. 1999, 1(11): 1795-1797.
[6] BIRMAN, V B, RHEINGOLD A L, LAM, K C. 1,1’-Spirobiindane-7,7’-diol: A Novel, C2-Symmetric Chiral Ligand[J]. Tetrahedron: Asymmetry. 1999, 10(1): 125-131.
[7] ZHOU Q L, et al. Highly Efficient and Practical Resolution of 1,1’-Spirobiindane-7,7’-Diol by Inclusion Crystallization with N-benzylcinchonidinium Chloride[J]. Tetrahedron: Asymmetry. 2002, 13(13): 1363-1366.
[8] XIE J H, ZHOU Q L. Magical Chiral Spiro Ligands[J]. Acta Chim. Sinica. 2014, 72(7): 778-797.
[9] YAN P C, CHE D Q, et al. Industrial Scale-Up of Enantioselective Hydrogenation for the Asymmetric Synthesis of Rivastigmine[J]. Organic Process Research & Development. 2013, 17 (2): 307-312.
[10] Mach R H, et al. Examination of Diazaspiro Cores as Piperazine Bioisosteres in the Olaparib Framework Shows Reduced DNA Damage and Cytotoxicity[J]. Journal of Medicinal Chemistry. 2018, 61(12): 5367-5379.
[11] MIYASHITA A, NOYORI R, et al. Synthesis of 2,2’-Bis(diphenylphosphino)-1,1’-binaphthyl (BINAP), An Atropisomeric Chiral Bis(triaryl)phosphine and Its Use in the Rhodium(I)-Catalyzed Asymmetric Hydrogenation of Alpha-(acylamino)acrylic Acids[J]. Journal of the American Chemical Society. 1980, 102(27): 7932-7934.
[12] ZHOU Q L, et al. Highly Enantioselective Hydrovinylation of r-Alkyl Vinylarenes. An Approachto the Construction of All-Carbon Quaternary Stereocenters[J]. Journal of the American Chemical Society. 2006, 128(6): 2780-2781.
[13] ZANONI G, et al. Enantioselective Catalytic Allylation of Carbonyl Groups by Umpolung of π-Allyl Palladium Complexes[J]. Angewandte Chemie International Edition. 2004, 43(7): 846-849.
[14] ZHOU Q L, ZHU S F, et al. Synthesis and Application of Chiral Spiro Phospholane Ligand in Pd-Catalyzed Asymmetric Allylation of Aldehydes with Allylic Alcohols[J]. Organic Letters 2005, 7(12): 2333-2335.
[15] GREGORY C F, et al. Asymmetric Copper-Catalyzed C-N Cross-Couplings Induced by Visible Light[J]. Science. 2016, 351(6274): 681-684.
[16] ZHOU Q L, ZHU S F, et al. Highly Enantioselective Hydrovinylation of r-Alkyl Vinylarenes. An Approachto the Construction of All-Carbon Quaternary Stereocenters[J]. Journal of the American Chemical Society. 2006, 128(9): 2780-2781.
[17] ADRIAB P, et al. Z-Selective Hydrothiolation of Racemic 1,3-Disubstituted Allenes: An Atom-Economic Rhodium-Catalyzed Dynamic Kinetic Resolution[J]. Angewandte Chemie International Edition. 2015, 52(54): 3121-3125.
[18] DONG V M, et al. Catalytic Hydrothiolation: Regio- and Enantioselective Coupling of Thiols and Dienes[J]. Journal of the American Chemical Society. 2018, 140(33): 10443-10446.
[19] ZHOU Q L, et al. Palladium-Catalyzed Asymmetric Hydrosulfonylation of 1,3-Dienes with Sulfonyl Hydrazides[J]. Angewandte Chemie International Edition. 2021, 60(6): 2948-2951.
[20] AKIYAMA T, et al. Enantioselective Mannich-Type Reaction Catalyzed by a Chiral Brønsted Acid[J]. Angewandte Chemie International Edition. 2004, 43(12): 1566-1568.
[21] TERADA M, etal. Chiral Brønsted Acid-Catalyzed Direct Mannich Reactions via Electrophilic Activation[J]. Journal of the American Chemical Society. 2004, 126(17): 5356-5357.
[22] LIN, X F, WANG Y G, et al. SPINOL-Derived Phosphoric Acids: Synthesis and Application in Enantioselective Friedel-Crafts Reaction of Indoles with Imines[J]. The Journal of Organic Chemistry. 2010, 75(24): 8677-8680.
[23] PAN Y, et al. Circularly Polarized White Organic Light-Emitting Diodes Basedon Spiro-Type Thermally Activated Delayed Fluorescence Materials[J]. Angewandte Chemie International Edition. 2022, 61(23): e202200290.
[24] TAN B, et al. Phosphoric Acid-Catalyzed Asymmetric Synthesis of SPINOL Derivatives[J]. Journal of the American Chemical Society. 2016, 138(50): 16561-16566.
[25] VENUGOPAL M, et al. Synthesis and Resolution of New Cyclohexyl Fused Spirobiindane 7, 7’-diol[J]. Tetrahedron: Asymmetry. 2004, 15(21): 3427-3431.
[26] DING K L, et al. Chiral Cyclohexyl-Fused Spirobiindanes: Practical Synthesis, Ligand Development, and Asymmetric Catalysis[J]. Journal of the American Chemical Society. 2018, 140(32): 10374-10381.
[27] LIN X F, et al. Synthesis and Application of a New Hexamethyl-1,1’-Spirobiindane-Based Chiral Bisphosphine (HMSI-PHOS) Ligand in Asymmetric Allylic Alkylation[J]. Org. Biomol. Chem. 2018, 16(18): 2239-2247.
[28] DING K L, et al. Development of Chiral Spiro Phosphoramidites for Rhodium-Catalyzed Enantioselective Reactions[J]. Chemistry-A European Journal. 2019, 25(40): 9491-9497.
[29] DOU X W, et al. Enantioselective Synthesis of 3,3’-Diaryl-SPINOLs: Rhodium-Catalyzed Asymmetric Arylation/BF3-Promoted Spirocyclization Sequence[J]. Angewandte Chemie International Edition. 2019, 58(8): 2474-2478.
[30] ZHOU Q L, et al. The Synthesis of Spirobitetraline Phosphoramidite Ligands and their Application in Rhodium-Catalyzed Asymmetric Hydrogenation[J]. Advanced Synthesis & Catalysis. 2007, 349(16): 2477-2484.
[31] ANDREI K, et al. Modified BINOL Ligands in Asymmetric Catalysis[J]. Chemical Reviews. 2003, 103(8): 3155-3212.
[32] SUN J W, et al. SPHENOL, A New Chiral Framework for Asymmetric Synthesis[J]. Journal of the American Chemical Society. 2021, 143(32): 12445-12449.
[33] VAN LEEUWN P W N M, et al. SPANphos: A C2-Symmetric trans-Coordinating Diphosphane Ligand[J]. Angewandte Chemie International Edition. 2003, 42(11): 1281-1284.
[34] VAN LEEUWN P W N M, et al. SPANphos Ligands in Palladium-Catalyzed Asymmetric Fluorination[J]. European Journal of Organic Chemistry. 2012, 2012(25): 4844-4852.
[35] DING K L, et al. Aromatic Spiroketal Bisphosphine Ligands: Palladium-Catalyzed Asymmetric Allylic Amination of Racemic Morita-Baylis-Hillman Adducts[J]. Angewandte Chemie International Edition. 2012, 51(37): 9276-9282.
[36] NAGORNY P, et al. Design, Synthesis, and Application of Chiral C2-Symmetric Spiroketal-Containing Ligands in Transition-Metal Catalysis[J]. Angewandte Chemie International Edition. 2018, 57(16): 5325-5329.
[37] SUN X W, et al. Asymmetric Synthesis of Chiral Spiroketal Bisphosphine Ligands and Their Application in Enantioselective Olefin Hydrogenation[J]. The Journal of Organic Chemistry. 2018, 83(20): 12838-12846.
[38] ZHANG X M, et al. Design and Synthesis of Chiral oxa-Spirocyclic Ligands for Ir-Catalyzed Direct Asymmetric Reduction of Bringmann’s Lactones with Molecular H2[J]. Journal of the American Chemical Society. 2018, 140(26): 8064-8068.
[39] ZHANG J C, et al. Design, Synthesis, and Resolution of Spirocyclic Bisoxindole-Based C2-Symmetric Diols[J]. The Journal of Organic Chemistry. 2020, 85(16): 10584-10592.
[40] WANG J, et al. Development of a C2-Symmetric Chiral Aza Spirocyclic Diol[J]. Organic Letters. 2020, 22(8): 3110-3113.
[41] MOTOO S, et al. Axially Chiral Spirosilanes via Catalytic Asymmetric Intramolecular Hydrosilation[J]. Journal of the American Chemical Society. 1996, 118(49): 12469-12470.
[42] TAKAI K, et al. Acceleration Effects of Phosphine Ligands on the Rhodium-Catalyzed Dehydrogenative Silylation and Germylation of Unactivated C(sp3) -H Bonds[J]. The Journal of Organic Chemistry. 2015, 80(11): 5407-5414.
[43] TAKAI K, et al. Rhodium-Catalyzed Asymmetric Synthesis of Spirosilabifluorene Derivatives[J]. Angewandte Chemie International Edition. 2013, 52(5): 1520-1522.
[44] WANG P, et al. Asymmetric Synthesis and Application of Chiral Spirosilabiindanes[J]. Angewandte Chemie International Edition. 2020, 59(23): 8937-8940.
[45] HORTON P, et al. Staurosporine Aglyeone (K252-c) and Arcyriaflavin A form the Marine Aseidian, Eudistoma sp[M]. Experientia 1994, 50: 843-845.
[46] BUSH J A, et al. Production and Biological Activity of Rebeccamycin, A Novel Antitumor Agent[J]. J Antibiot. 1987, 40: 668-678.
[47] DIOTALLEVI A, et al. Phenotype Screening of an Azole-bisindole Chemical Library Identifies URB1483 as a New Antileishmanial Agent Devoid of Toxicity on Human Cells[J]. ACS Omega. 2021, 6(51): 35699-35710.
[48] SHARMA D K, et al. Design and Synthesis of Novel N,N-glycoside Derivatives of 3,3-Diindolylmethanes as Potential Antiproliferative Agents[J]. Med Chem Commun. 2012, 3(10): 1082-1091.
[49] LU R, et al. Electroluminescence and Fluorescence Response towards Acid Vapors Depending on the Structures of Indole-fused Phospholes. RSC Advances. 2015, 115(5): 94990-94996.
[50] ZAITSU K, et al. Bisindolylmaleimides with Large Stokes Shift and Long-Lasting Chemiluminescence Properties[J]. Organic Letters. 2007, 9(18): 3583-3586.

所在学位评定分委会
材料与化工
国内图书分类号
O621.3
来源库
人工提交
成果类型学位论文
条目标识符//www.snoollab.com/handle/2SGJ60CL/778979
专题理学院_化学系
推荐引用方式
GB/T 7714
赵浩文. 手性螺环双吲哚骨架的催化不对称构建及其应用研究[D]. 深圳. ,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132824-赵浩文-化学系.pdf(10343KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[赵浩文]的文章
百度学术
百度学术中相似的文章
[赵浩文]的文章
必应学术
必应学术中相似的文章
[赵浩文]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map