中文版 | English
题名

绿色催化羟基化和环加成反应机理的计算研究

其他题名
A COMPUTATIONAL STUDY ON MECHANISMS OF GREEN CATALYTIC HYDROXYLATION AND CYCLOADDITION REACTIONS
姓名
姓名拼音
LI Fangfang
学号
12131183
学位类型
博士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
钟龙华
导师单位
理学院@化学系
论文答辩日期
2024-05-10
论文提交日期
2024-06-23
学位授予单位
学位授予地点
深圳
摘要

绿色催化反应是一类符合绿色化学原则的环保和高效的反应,反应物和生成物均为对环境毒性较低或者无环境毒性的化学品,具有反应条件温和、原子经济性高和环境友好的特点。发展绿色催化反应对人类的健康和环境保护具有重要意义。羟基化反应和环加成反应作为常用的有机合成方法,发展其绿色合成也是至关重要。目前,第一周期过渡金属催化和光酶催化的绿色羟基化反应和环加成反应已经有不少报道,但是相关的反应机理研究并不充分。因此,本文选取了四个绿色催化的羟基化反应和环加成反应,采用了计算化学的研究方法,对反应的机理进行了系统的研究。

本文通过多尺度模拟的方法(密度泛函理论(DFT)与量子力学/分子力学(QM/MM)方法),采用小分子模型、簇模型和全蛋白体系,对XOM光酶催化羟基化反应进行了深入的研究。计算结果揭示了反应通过两步基元反应完成,氢原子转移步骤为反应速率决定步,提出了在原光敏剂的羰基g位用N原子取代C原子会使得反应中间体和产物形成分子内氢键而更加稳定,可以使得反应在热力学上更加有利。光催化与酶催化结合的方法提高了酶催化的效率,并且对环境友好,符合绿色化学理念。然而,目前酶催化剂种类较少,并且酶催化剂对于温度和pH等条件较为敏感,在工业应用上仍有所局限。相比之下,过渡金属催化剂通常具有更好的化学稳定性和热稳定性。

因此,为了更深入地探究绿色催化羟基化反应机理,本文使用DFT方法对钛/钴双金属催化环氧化合物异构化为烯丙基醇的羟基化反应进行了详细的计算研究,阐明了反应机理,揭示了钛和钴双金属共同作用催化了关键的氢原子转移决速步,该步骤涉及三重态到单重态的双态反应性,在降低反应能垒和稳定产物方面起到了重要的作用。反应过程中的其他步骤通过单金属催化的形式进行,虽然双金属催化过程中存在有利的色散相互作用,但是却存在较高的熵损失,不利于双金属催化过程的发生。此外,本文选取了双锌催化的丙二酸酯的选择性羟基化反应进行了深入的DFT计算研究,揭示了该反应中关键的负氢转移步骤是通过直接的氢负离子转移机理,即Zn-H键上的氢负离子直接作为亲核试剂进攻丙二酸酯的一个羰基碳原子,完成丙二酸酯的羟基化。通过对映选择性分析,阐明了影响该反应立体选择性的因素包括底物与配体之间的位阻效应、底物与配体的p-p堆积等。

绿色催化环加成反应也是一类重要的合成反应,为了探究绿色催化环加成反应机理,本文对铜催化的非活化烯烃的1,3-偶极环加成反应进行了DFT计算研究,阐明了环加成通过两步基元反应完成,并且第二步环化过程为决速步。另外,揭示了影响反应区域选择性的主要因素是产物的稳定性,预测了8,8-二甲基异苯并富烯发生[3+6]环加成反应,说明了过渡态结构中的位阻效应和不同过渡态的扭曲能的差异是影响反应区域选择性、立体选择性和化学选择性的原因。

综上所述,本文利用计算化学方法深入研究了绿色羟基化和环加成反应的机理,为理解光酶催化以及过渡金属催化的反应机理,尤其是双金属催化的反应机理提供了重要的理论见解,这些计算研究的成果不仅有助于优化反应条件,提高反应效率,同时也为指导设计新型绿色可持续发展的催化体系提供了理论依据。

其他摘要

Hydroxylation and cycloaddition reactions are important organic synthesis reactions. Meanwhile, development of environmentally-friendly catalysis is essential for the sustainable manufactory. In this dissertation, computational chemistry has been used to examine the reaction mechanisms of transition metal-catalyzed hydroxylation, photoenzyme-catalyzed hydroxylation, as well as transition metal-catalyzed 1,3-dipole cycloaddition.

Hydroxylation reaction catalyzed by XOM photoenzyme was studied in-depth by multi-scale simulations. The computational results reveal that the reaction is completed by a two-step process, in which the hydrogen atom transfer step is the rate-determining step. The substitution of Cg atom of the carbonyl group by N atom in the XOM photosensitizer is proposed to form an intramolecular H-bond in the product, which can make the reaction more thermodynamically favorable.

In order to further explore the mechanism of green catalytic hydroxylation reaction, a DFT study of a synergistic bimetallic Ti/Co-catalyzed epoxide isomerization reaction to form a hydroxyl group is investigated in detail. The DFT results clarify reaction mechanism, and reveal that the bimetallic-catalyzed hydrogen atom transfer (HAT) step is the rate-determining step in the reaction. This HAT step also involves the two-state reactivity switching from triplet state to singlet state. Moreover, such two-state reactivity plays an important role in reducing the energy barrier and enhancing the stability of the product. Moreover, the other steps were found to be carried out in the form of monometallic catalysis instead of bimetallic process. Although there are favorable dispersion interactions in the bimetallic catalytic process, it experiences a higher entropy loss, which is the key to disfavor the bimetallic catalytic process.

In addition, a DFT study on di-Zn metal-catalyzed desymmetrization of malonate esters to form a hydroxyl group is presented. The key hydride transfer step in the reaction is revealed to occur through the direct hydride transfer mechanism, in which the hydride on the Zn-H bond directly attacks a carbonyl carbon atom of the malonate as a nucleophile to complete the desymmetrization of the malonate. Through enantio-selectivity analysis, the factors affecting the stereo-selectivity of the reaction were explored.

To reveal the mechanism of green catalytic cycloaddition reaction, a reaction mechanism for a Cu-catalyzed 1,3-dipolar cycloaddition of unactivated alkenes was studied. It was clarified that the cycloaddition was completed by a two-step mechanism, and the second step of cyclization was the rate-determining step. Then, the reasons affecting the regio-, stereo- and chemo-selectivity of the reaction were revealed, in which the stability of the products play the key factor. Futhermore, 8,8-dimethylisobenzofulvene is predicted to undergo [3+6] cycloaddition reaction in the same catalytic system.

In summary, computational chemistry methods were applied to investigate the reaction mechanisms of green hydroxylation and cycloaddition, which provides important theoretical insights for understanding the reaction mechanism catalyzed by photoenzyme and transition metals (especially the reaction mechanisms catalyzed by bimetallic systems) as well as hopefully guide the design of new green and sustainable catalytic systems.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] FISH R H, PRICE R T. Biomimetic organometallic chemistry. Regio- and stereoselectivity in the hydroxylation reaction of cyclohexyltriphenyltin with metalloporphyrins as the biomimetic catalysts and iodosylbenzene as the oxygen transfer agent[J]. Organometallics, 2002, 8(1): 225-228.
[2] MA S K, GRUBER J, DAVIS C, et al. A green-by-design biocatalytic process for atorvastatin intermediate[J]. Green Chemistry, 2010, 12(1): 81-86.
[3] MüLLER M. Chemoenzymatic synthesis of building blocks for statin side chains[J]. Angewandte Chemie International Edition, 2004, 44(3): 362-365.
[4] MANOJ A, DAS S, KUNNATH RAMACHANDRAN A, et al. SGLT2 inhibitors, an accomplished development in field of medicinal chemistry: an extensive review[J]. Future Medicinal Chemistry, 2020, 12(21): 1961-1990.
[5] BIDARD F-C, KAKLAMANI V G, NEVEN P, et al. Elacestrant (oral selective estrogen receptor degrader) versus standard endocrine therapy for estrogen receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: results from the randomized phase III EMERALD trial[J]. Journal of Clinical Oncology, 2022, 40(28): 3246-3256.
[6] ARIAZI J L, DUFFY K J, ADAMS D F, et al. Discovery and preclinical characterization of GSK1278863 (Daprodustat), a small molecule hypoxia inducible factor–prolyl hydroxylase inhibitor for anemia[J]. Journal of Pharmacology and Experimental Therapeutics, 2017, 363(3): 336-347.
[7] MARKHAM A, KEAM S J. Sotagliflozin: First global approval[J]. Drugs, 2019, 79(9): 1023-1029.
[8] CEFALO C M A, CINTI F, MOFFA S, et al. Sotagliflozin, the first dual SGLT inhibitor: current outlook and perspectives[J]. Cardiovascular Diabetology, 2019, 18(1):20.
[9] MARTINEZ BOTELLA G, SALITURO F G, HARRISON B L, et al. Neuroactive steroids. 2. 3α-hydroxy-3β-methyl-21-(4-cyano-1h-pyrazol-1’-yl)-19-nor-5β-pregnan-20-one (SAGE-217): A clinical next generation neuroactive steroid positive allosteric modulator of the (γ-aminobutyric acid)A receptor[J]. Journal of Medicinal Chemistry, 2017, 60(18): 7810-7819.
[10] ADDIE M, BALLARD P, BUTTAR D, et al. Discovery of 4-amino-N-[(1S)-1-(4-chlorophenyl)-3-hydroxypropyl]-1-(7H-pyrrolo
[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamide (AZD5363), an orally bioavailable, potent inhibitor of Akt kinases[J]. Journal of Medicinal Chemistry, 2013, 56(5): 2059-2073.
[11] CARRETERO J C, ADRIO J, CORPAS J, et al. Catalyst-controlled chemodivergent
[3+3] and
[3+2] formal cycloadditions of azomethine ylides with diphenylcyclopropenone[J]. Synthesis, 2022, 54(21): 4673-4682.
[12] CHEN B-S, RIBEIRO DE SOUZA F Z. Enzymatic synthesis of enantiopure alcohols: current state and perspectives[J]. Rsc Advances, 2019, 9(4): 2102-2115.
[13] PRIER C K, KOSJEK B. Recent preparative applications of redox enzymes[J]. Current Opinion in Chemical Biology, 2019, 49: 105-112.
[14] HOLLMANN F, ARENDS I W C E, HOLTMANN D. Enzymatic reductions for the chemist[J]. Green Chemistry, 2011, 13(9): 2285.
[15] HELD M, SCHMID A, VAN BEILEN J B, et al. Biocatalysis. Biological systems for the production of chemicals[J]. Pure and Applied Chemistry, 2000, 72(7): 1337-1343.
[16] BUHLER B, SCHMID A. Process implementation aspects for biocatalytic hydrocarbon oxyfunctionalization[J]. Journal of Biotechnology, 2004, 113(1-3): 183-210.
[17] WU S, SNAJDROVA R, MOORE J C, et al. Biocatalysis: Enzymatic synthesis for industrial applications[J]. Angewandte Chemie International Edition, 2021, 60(1): 88-119.
[18] ZHOU J, XU G, NI Y. Stereochemistry in asymmetric reduction of bulky-bulky ketones by alcohol dehydrogenases[J]. ACS Catalysis, 2020, 10(19): 10954-10966.
[19] QIN L, WU L, NIE Y, et al. Biosynthesis of chiral cyclic and heterocyclic alcohols via C=O/C-H/C-O asymmetric reactions[J]. Catalysis Science & Technology, 2021, 11(8): 2637-2651.
[20] JöRNVALL H, HEDLUND J, BERGMAN T, et al. Origin and evolution of medium chain alcohol dehydrogenases[J]. Chemico-Biological Interactions, 2013, 202(1-3): 91-96.
[21] PRELOG V. Specification of the stereospecificity of some oxido-reductases by diamond lattice sections[J]. Pure and Applied Chemistry, 1964, 9(1): 119-130.
[22] KEINAN E, HAFELI E K, SETH K K, et al. Thermostable enzymes in organic synthesis. 2. Asymmetric reduction of ketones with alcohol dehydrogenase from Thermoanaerobium brockii[J]. Journal of the American Chemical Society, 2002, 108(1): 162-169.
[23] NEWCOMB M, TOY P H. Hypersensitive radical probes and the mechanisms of cytochrome P450-Catalyzed hydroxylation reactions[J]. Accounts of Chemical Research, 2000, 33(7): 449-455.
[24] HERRON N, TOLMAN C A. A highly selective zeolite catalyst for hydrocarbon oxidation. A completely inorganic mimic of the alkane -hydroxylases[J]. Journal of the American Chemical Society, 2002, 109(9): 2837-2839.
[25] FITZPATRICK P F. Mechanism of aromatic amino acid hydroxylation[J]. Biochemistry, 2003, 42(48): 14083-14091.
[26] ARNOLD F H. Combinatorial and computational challenges for biocatalyst design[J]. Nature, 2001, 409(6817): 253-257.
[27] PATNAIK R, LOUIE S, GAVRILOVIC V, et al. Genome shuffling of Lactobacillus for improved acid tolerance[J]. Nature Biotechnology, 2002, 20(7): 707-712.
[28] FARINAS E T, BULTER T, ARNOLD F H. Directed enzyme evolution[J]. Current Opinion in Biotechnology, 2001, 12(6): 545-551.
[29] BOLON D N, VOIGT C A, MAYO S L. Design of biocatalysts[J]. Current Opinion in Chemical Biology, 2002, 6(2): 125-129.
[30] JIANG L, ALTHOFF E A, CLEMENTE F R, et al. De novo computational design of retro-aldol enzymes[J]. Science, 2008, 319(5868): 1387-1391.
[31] GLIEDER A, FARINAS E T, ARNOLD F H. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase[J]. Nature Biotechnology, 2002, 20(11): 1135-1139.
[32] IQBAL Z, JOSHI A, RANJAN DE S. Recent advancements on transition-metal-catalyzed, chelation-induced ortho-hydroxylation of arenes[J]. Advanced Synthesis & Catalysis, 2020, 362(23): 5301-5351.
[33] ENTHALER S, COMPANY A. Palladium-catalysed hydroxylation and alkoxylation[J]. Chemical Society Reviews, 2011, 40(10): 4912.
[34] LYU H, QUAN Y, XIE Z. Rhodium-catalyzed regioselective hydroxylation of cage B-H bonds of o-carboranes with O2 or air[J]. Angewandte Chemie International Edition, 2016, 55(39): 11840-11844.
[35] TOULLEC P Y, BONACCORSI C, MEZZETTI A, et al. Expanding the scope of asymmetric electrophilic atom-transfer reactions: titanium- and ruthenium-catalyzed hydroxylation of β-ketoesters[J]. Proceedings of the National Academy of Sciences, 2004, 101(16): 5810-5814.
[36] SCHROEDER M. Osmium tetraoxide cis hydroxylation of unsaturated substrates[J]. Chemical Reviews, 2002, 80(2): 187-213.
[37] YANG L, HUANG Z, LI G, et al. Synthesis of phenols: organophotoredox/nickel dual catalytic hydroxylation of aryl halides with water[J]. Angewandte Chemie International Edition, 2018, 57(7): 1968-1972.
[38] KUMAR P, KUMAR SHARMA A, SINGH R, et al. Nickel catalyzed Ipso-hydroxylation and subsequent cross dehydrogenative coupling of arylboronic acids with tertiary amines: A facile access to α-phenolated tertiary amines[J]. Advanced Synthesis & Catalysis, 2018, 360(9): 1786-1789.
[39] CHEN K, COSTAS M, KIM J, et al. Olefin cis-dihydroxylation versus epoxidation by non-heme iron catalysts: two faces of an Fe(III)-OOH coin [J]. Journal of the American Chemical Society, 2002, 124(12): 3026-3035.
[40] UVAROV V M, DE VEKKI D A. Recent progress in the development of catalytic systems for homogenous asymmetric hydrosilylation of ketones[J]. Journal of Organometallic Chemistry, 2020, 923:121415-121449.
[41] BHUNIA M, SREEJYOTHI P, MANDAL S K. Earth-abundant metal catalyzed hydrosilylative reduction of various functional groups[J]. Coordination Chemistry Reviews, 2020, 405:213110-213148.
[42] LIANG X, LI H, DU F, et al. Copper and l-(−)-quebrachitol catalyzed hydroxylation and amination of aryl halides under air[J]. Tetrahedron Letters, 2020, 61(33): 152222-152226.
[43] CORMA A. Attempts to fill the gap between enzymatic, homogeneous, and heterogeneous catalysis[J]. Catalysis Reviews, 2011, 46(3-4): 369-417.
[44] DEUSS P J, DEN HEETEN R, LAAN W, et al. Bioinspired catalyst design and artificial metalloenzymes[J]. Chemistry-A European Journal, 2011, 17(17): 4680-4698.
[45] MUTHURAMALINGAM S, ANANDABABU K, VELUSAMY M, et al. Benzene hydroxylation by bioinspired copper(II) complexes: coordination geometry versus reactivity[J]. Inorganic Chemistry, 2020, 59(9): 5918-5928.
[46] ITOH S, TACHI Y. Structure and O2-reactivity of copper(I) complexes supported by pyridylalkylamine ligands[J]. Dalton Transactions, 2006(38): 4531-4538.
[47] ITOH S. Developing mononuclear copper–active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions[J]. Accounts of Chemical Research, 2015, 48(7): 2066-2074.
[48] KUNISHITA A, KUBO M, SUGIMOTO H, et al. Mononuclear copper(II)-superoxo complexes that mimic the structure and reactivity of the active centers of PHM and DβM[J]. Journal of the American Chemical Society, 2009, 131(8): 2788-2789.
[49] ITOH S, KONDO T, KOMATSU M, et al. Functional model of dopamine .beta.-hydroxylase. quantitative ligand hydroxylation at the benzylic position of a copper complex by dioxygen[J]. Journal of the American Chemical Society, 2002, 117(16): 4714-4715.
[50] MAITI D, LEE D H, GAOUTCHENOVA K, et al. Reactions of a copper(II) superoxo complex lead to C-H and O-H substrate oxygenation: modeling copper-monooxygenase C-H hydroxylation[J]. Angewandte Chemie International Edition, 2007, 47(1): 82-85.
[51] BECKER M, SCHINDLER S, KARLIN K D, et al. Intramolecular ligand hydroxylation:  mechanistic high-pressure studies on the reaction of a dinuclear copper(I) complex with dioxygen[J]. Inorganic Chemistry, 1999, 38(9): 1989-1995.
[52] KARLIN K D, ZHANG C X, RHEINGOLD A L, et al. Reversible dioxygen binding and arene hydroxylation reactions: Kinetic and thermodynamic studies involving ligand electronic and structural variations[J]. Inorganica Chimica Acta, 2012, 389: 138-150.
[53] RYAN S, ADAMS H, FENTON D E, et al. Intramolecular ligand hydroxylation:  mechanistic studies on the reaction of a copper(I) schiff base complex with dioxygen[J]. Inorganic Chemistry, 1998, 37(9): 2134-2140.
[54] PFEFFER M A, MCMURRAY J J V, VELAZQUEZ E J, et al. Valsartan, Captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both[J]. New England Journal of Medicine, 2003, 349(20): 1893-1906.
[55] SMIEJA M. Current indications for the use of clindamycin: a critical review[J]. Canadian Journal of Infectious Diseases, 1998, 9(1): 22-28.
[56] GRI J, JAIN V. Pneumocystis jirovecii pneumonia: a case report[J]. Journal of Medical Case Reports, 2024, 18(1): 52-57.
[57] CORTESE L, BRESSAN R A, CASTLE D J, et al. Management of schizophrenia: clinical experience with asenapine[J]. Journal of Psychopharmacology, 2013, 27(S4): 14-22.
[58] HUISGEN R. 1,3-dipolar cycloadditions. past and future[J]. Angewandte Chemie International Edition, 2003, 2(10): 565-598.
[59] BREUGST M, REISSIG H U. The Huisgen reaction: milestones of the 1,3-dipolar cycloaddition[J]. Angewandte Chemie International Edition, 2020, 59(30): 12293-12307.
[60] HASHIMOTO T, MARUOKA K. Recent advances of catalytic asymmetric 1,3-dipolar cycloadditions[J]. Chemical Reviews, 2015, 115(11): 5366-5412.
[61] GOTHELF K V, JøRGENSEN K A. Asymmetric 1,3-dipolar cycloaddition reactions[J]. Chemical Reviews, 1998, 98(2): 863-910.
[62] SHUMILIN I A, NIKANDROV V V, POPOV V O, et al. Photogeneration of NADH under coupled action of CdS semiconductor and hydrogenase from Alcaligenes eutrophus without exogenous mediators[J]. FEBS Letters, 2001, 306(2-3): 125-128.
[63] LIU M, PENG T, LI H, et al. Photoresponsive nanostructure assisted green synthesis of organics and polymers[J]. Applied Catalysis B: Environmental, 2019, 249: 172-210.
[64] PENG Y, CHEN Z, XU J, et al. Recent advances in photobiocatalysis for selective organic synthesis[J]. Organic Process Research & Development, 2022, 26(7): 1900-1913.
[65] EMMANUEL M A, BENDER S G, BILODEAU C, et al. Photobiocatalytic strategies for organic synthesis[J]. Chemical Reviews, 2023, 123(9): 5459-5520.
[66] ZHANG S, LIU S, SUN Y, et al. Enzyme-photo-coupled catalytic systems[J]. Chemical Society Reviews, 2021, 50(24): 13449-13466.
[67] LAUDER K, TOSCANI A, QI Y, et al. Photo-biocatalytic one-pot cascades for the enantioselective synthesis of 1,3-mercaptoalkanol volatile sulfur compounds[J]. Angewandte Chemie International Edition, 2018, 57(20): 5803-5807.
[68] SANDOVAL B A, KURTOIC S I, CHUNG M M, et al. Photoenzymatic catalysis enables radical-mediated ketone reduction in ene-reductases[J]. Angewandte Chemie International Edition, 2019, 58(26): 8714-8718.
[69] DEHOVITZ J S, LOH Y Y, KAUTZKY J A, et al. Static to inducibly dynamic stereocontrol: The convergent use of racemic β-substituted ketones[J]. Science, 2020, 369(6507): 1113-1118.
[70] PRATS LUJáN A, BHAT M F, SARAVANAN T, et al. Chemo- and enantioselective photoenzymatic ketone reductions using a promiscuous Flavin-dependent nitroreductase[J]. ChemCatChem, 2022, 14(8): e202200043.
[71] XING X, LIU Y, SHI M-L, et al. Preparation of chiral aryl alcohols: a controllable enzymatic strategy via light-driven NAD(P)H regeneration[J]. New Journal of Chemistry, 2022, 46(13): 6274-6282.
[72] LIU Y, ZHU L, LI X, et al. Photoredox/enzymatic catalysis enabling redox-neutral decarboxylative asymmetric C–C coupling for asymmetric synthesis of chiral 1,2-amino alcohols[J]. JACS Au, 2023, 3(11): 3005-3013.
[73] RODRíGUEZ‐FERNáNDEZ L, LAVANDERA I, GOTOR‐FERNáNDEZ V. Photocatalytic oxidative cleavage of alkenes followed by carbonyl stereoselective bioreduction for the synthesis of enantioenriched secondary alcohols[J]. Advanced Synthesis & Catalysis, 2024, 366(4): 900-908.
[74] HUISMAN G W, LIANG J, KREBBER A. Practical chiral alcohol manufacture using ketoreductases[J]. Current Opinion in Chemical Biology, 2010, 14(2): 122-129.
[75] HOU L, LIU X, CAO W, et al. Recent advances in visible light-induced asymmetric transformations of carbonyl compounds into chiral alcohols[J]. ChemCatChem, 2023, 15(21): e202300893.
[76] LIU X, LIU P, LI H, et al. Excited-state intermediates in a designer protein encoding a phototrigger caught by an X-ray free-electron laser[J]. Nature Chemistry, 2022, 14(9): 1054-1060.
[77] NOYORI R, OHKUMA T, KITAMURA M, et al. Asymmetric hydrogenation of .beta.-keto carboxylic esters. A practical, purely chemical access to .beta.-hydroxy esters in high enantiomeric purity[J]. Journal of the American Chemical Society, 2002, 109(19): 5856-5858.
[78] NOYORI R. Organometallic ways for the multiplication of chirality[J]. Tetrahedron, 1994, 50(15): 4259-4292.
[79] NOYORI R, TAKAYA H. BINAP: an efficient chiral element for asymmetric catalysis[J]. Accounts of Chemical Research, 2002, 23(10): 345-350.
[80] NOYORI R. Centenary lecture. Chemical multiplication of chirality: science and applications[J]. Chemical Society Reviews, 1989, 18: 187-208.
[81] NUGENT W A, RAJANBABU T V, BURK M J. Beyond nature's chiral pool: enantioselective catalysis in industry[J]. Science, 1993, 259(5094): 479-483.
[82] BURK M J. Modular phospholane ligands in asymmetric catalysis[J]. Accounts of Chemical Research, 2000, 33(6): 363-372.
[83] SUN X, LI W, HOU G, et al. Axial chirality control by 2,4‐pentanediol for the alternative synthesis of C3*-tunephos chiral diphosphine ligands and their applications in highly enantioselective ruthenium-catalyzed hydrogenation of β-keto esters[J]. Advanced Synthesis & Catalysis, 2009, 351(16): 2553-2557.
[84] ZHOU Y-G, TANG W, WANG W-B, et al. Highly effective chiral ortho-substituted BINAPO ligands (o-BINAPO):  applications in Ru-catalyzed asymmetric hydrogenations of β-aryl-substituted β-(acylamino)acrylates and β-keto esters[J]. Journal of the American Chemical Society, 2002, 124(18): 4952-4953.
[85] XIE J H, LIU X Y, YANG X H, et al. Chiral iridium catalysts bearing spiro pyridine-aminophosphine ligands enable highly efficient asymmetric hydrogenation of β-aryl β-ketoesters[J]. Angewandte Chemie International Edition, 2011, 51(1): 201-203.
[86] BAO D H, WU H L, LIU C L, et al. Development of chiral spiro P-N-S ligands for iridium-catalyzed asymmetric hydrogenation of β-alkyl-β-ketoesters[J]. Angewandte Chemie International Edition, 2015, 127(30): 8915-8918.
[87] XU Q, GOU W, DAI P, et al. Cinchona-alkaloid-derived NNP ligand for iridium-catalyzed asymmetric hydrogenation of β-keto ester[J]. The Journal of Organic Chemistry, 2024, 89(3): 1446-1457.
[88] BETTE V, MORTREUX A, LEHMANN C W, et al. Direct Zn-diamine promoted reduction of C=O and C=N bonds by polymethylhydrosiloxane in methanol[J]. Chemical Communications, 2003, 3: 332-333.
[89] BETTE V, MORTREUX A, SAVOIA D, et al. [Zinc-diamine]-catalyzed hydrosilylation of ketones in methanol. new developments and mechanistic insights[J]. Advanced Synthesis & Catalysis, 2005, 347(2-3): 289-302.
[90] GAJEWY J, GAWRONSKI J, KWIT M. Mechanism and enantioselectivity of [zinc(diamine)(diol)]-catalyzed asymmetric hydrosilylation of ketones: DFT, NMR and ECD studies[J]. European Journal of Organic Chemistry, 2013(2): 307-318.
[91] TROST B M, ITO H, SILCOFF E R. Asymmetric aldol reaction via a dinuclear zinc catalyst:  α-hydroxyketones as donors[J]. Journal of the American Chemical Society, 2001, 123(14): 3367-3368.
[92] TROST B M, SILCOFF E R, ITO H. Direct asymmetric aldol reactions of acetone using bimetallic zinc catalysts[J]. Organic Letters, 2001, 3(16): 2497-2500.
[93] TROST B M, ITO H. A direct catalytic enantioselective aldol reaction via a novel catalyst design[J]. Journal of the American Chemical Society, 2000, 122(48): 12003-12004.
[94] TROST B M, YEH V S C. Stereocontrolled synthesis of (+)-boronolide[J]. Organic Letters, 2002, 4(20): 3513-3516.
[95] TROST B M, YEH V S C, ITO H, et al. Effect of ligand structure on the zinc-catalyzed henry reaction. asymmetric syntheses of (−)-denopamine and (−)-arbutamine[J]. Organic Letters, 2002, 4(16): 2621-2623.
[96] READY J M, JACOBSEN E N. A practical oligomeric [(salen)Co] catalyst for asymmetric epoxide ring-opening reactions[J]. Angewandte Chemie International Edition, 2002, 41(8): 1374-1377.
[97] TROST B M, TERRELL L R. A direct catalytic asymmetric Mannich-type reaction to syn-amino alcohols[J]. Journal of the American Chemical Society, 2002, 125(2): 338-339.
[98] TROST B M, MINO T. Desymmetrization of meso 1,3- and 1,4-diols with a dinuclear zinc asymmetric catalyst[J]. Journal of the American Chemical Society, 2003, 125(9): 2410-2411.
[99] TROST B M, FETTES A, SHIREMAN B T. Direct catalytic asymmetric aldol additions of methyl Ynones. Spontaneous reversal in the sense of enantioinduction[J]. Journal of the American Chemical Society, 2004, 126(9): 2660-2661.
[100] XIAO Y, WANG Z, DING K. Copolymerization of cyclohexene oxide with CO2 by using intramolecular dinuclear zinc catalysts[J]. Chemistry- A European Journal, 2005, 11(12): 3668-3678.
[101] QI N, LIAO R Z, YU J G, et al. DFT study of the asymmetric nitroaldol (Henry) reaction catalyzed by a dinuclear zn complex[J]. Journal of Computational Chemistry, 2010, 31(7): 1376-1384.
[102] TROST B M, BARTLETT M J, WEISS A H, et al. Development of Zn-ProPhenol-catalyzed asymmetric alkyne addition: synthesis of chiral propargylic alcohols[J]. Chemistry-A European Journal, 2012, 18(51): 16498-16509.
[103] ZHENG Y, ZHANG S, LOW K-H, et al. A unified and desymmetric approach to chiral tertiary alkyl halides[J]. Journal of the American Chemical Society, 2022, 144(4): 1951-1961.
[104] ZHANG Y, XU P, ZHAO Q, et al. Zinc-catalyzed desymmetric hydrosilylation of monosubstituted malonic esters[J]. Organic Chemistry Frontiers, 2023, 10(7): 1675-1679.
[105] LIU H, LAU V H M, XU P, et al. Diverse synthesis of α-tertiary amines and tertiary alcohols via desymmetric reduction of malonic esters[J]. Nature Communications, 2022, 13(1):4759-4768.
[106] XU P, SHEN C, XU A, et al. Desymmetric cyanosilylation of acyclic 1,3-diketones[J]. Angewandte Chemie International Edition, 2022, 134(37): e202208443.
[107] GARCíA-URDIALES E, ALFONSO I, GOTOR V. Enantioselective enzymatic desymmetrizations in organic synthesis[J]. Chemical Reviews, 2005, 105(1): 313-354.
[108] PROVENCHER L, JONES J B. A Concluding specification of the dimensions of the active site model of pig liver esterase[J]. The Journal of Organic Chemistry, 2002, 59(10): 2729-2732.
[109] GAJEWY J, KWIT M. The gains from breaking symmetry[J]. Nature Chemistry, 2021, 13(7): 623-624.
[110] XU P W, HUANG Z X. Catalytic reductive desymmetrization of malonic esters[J]. Nature Chemistry, 2021, 13(7): 634-642.
[111] ZHANG J, LIAO J, WEI Y-F, et al. Recent advance of allylic alcohol reagents in organic synthesis[J]. Mini-Reviews in Organic Chemistry, 2018, 15(6): 476-487.
[112] BUTT N A, ZHANG W B. Transition metal-catalyzed allylic substitution reactions with unactivated allylic substrates[J]. Chemical Society Reviews, 2015, 44(22): 7929-7967.
[113] NáJERA C, BAEZA A. Recent advances in the direct nucleophilic substitution of allylic alcohols through SN1-type reactions[J]. Synthesis, 2013, 46(01): 25-34.
[114] MUZART J. Procedures for and possible mechanisms of Pd-catalyzed allylations of primary and secondary amines with allylic alcohols[J]. European Journal of Organic Chemistry, 2007, 19: 3077-3089.
[115] SUNDARARAJU B, ACHARD M, BRUNEAU C. Transition metal catalyzed nucleophilic allylic substitution: activation of allylic alcohols via pi-allylic species[J]. Chemical Society Reviews, 2012, 41(12): 4467-4483.
[116] LORENZO-LUIS P, ROMEROSA A, SERRANO-RUIZ M. Catalytic Isomerization of allylic alcohols in water[J]. ACS Catalysis, 2012, 2(6): 1079-1086.
[117] MULLER P, FRUIT C. Enantioselective catalytic aziridinations and asymmetric nitrene insertions into CH bonds[J]. Chemical Reviews, 2003, 103(8): 2905-2920.
[118] FOURNIER J F, MATHIEU S, CHARETTE A B. Diastereoselective zinco-cyclopropanation of chiral allylic alcohols with dizinc carbenoids[J]. Journal of the American Chemical Society, 2005, 127(38): 13140-13141.
[119] NICOLAOU K C, SUN Y P, KORMAN H, et al. Asymmetric total synthesis of cylindrocyclophanes A and F through cyclodimerization and a Ramberg-Backlund reaction[J]. Angewandte Chemie International Edition, 2010, 49(34): 5875-5878.
[120] SCALAMBRA F, LORENZO-LUIS P, DE LOS RIOS I, et al. Isomerization of allylic alcohols in water catalyzed by transition metal complexes[J]. Coordination Chemistry Reviews, 2019, 393: 118-148.
[121] MENINNO S, LATTANZI A. Organocatalytic asymmetric reactions of epoxides: Recent progress[J]. Chemistry, 2016, 22(11): 3632-3642.
[122] JAT J L, KUMAR G. Isomerization of epoxides[J]. Advanced Synthesis & Catalysis, 2019, 361(19): 4426-4441.
[123] HUBBELL A K, COATES G W. Nucleophilic transformations of Lewis acid-activated disubstituted epoxides with catalyst-controlled regioselectivity[J]. The Journal of Organic Chemistry, 2020, 85(21): 13391-13414.
[124] LUMBROSO A, COOKE M L, BREIT B. Catalytic asymmetric synthesis of allylic alcohols and derivatives and their applications in organic synthesis[J]. Angewandte Chemie International Edition, 2013, 52(7): 1890-1932.
[125] WHITESELL J K, FELMAN S W. Asymmetric induction. 3. Enantioselective deprotonation by chiral lithium amide bases[J]. The Journal of Organic Chemistry, 1980, 45(4): 755-756.
[126] ASAMI M, OGAWA M, INOUE S. An asymmetric synthesis of (1S,4R)-4-amino-2-cyclopentenol derivatives[J]. Tetrahedron Letters, 1999, 40(8): 1563-1564.
[127] ASAMI M, SUGA T, HONDA K, et al. A novel highly effective chiral lithium amide for catalytic enantioselective deprotonation of meso-epoxides[J]. Tetrahedron Letters, 1997, 38(36): 6425-6428.
[128] SöDERGREN M J, BERTILSSON S K, ANDERSSON P G. Allylic alcohols via catalytic asymmetric epoxide rearrangement[J]. Journal of the American Chemical Society, 2000, 122(28): 6610-6618.
[129] PETTERSEN D, AMEDJKOUH M, NILSSON LILL S O, et al. Kinetic and computational studies of the composition and structure of activated complexes in the asymmetric deprotonation of cyclohexene oxide by a norephedrine-derived chiral lithium amide[J]. Journal of the Chemical Society, Perkin Transactions 2, 2001(9): 1654-1661.
[130] COPE A C, LEE H-H, PETREE H E. Proximity effects. XII. Reaction of cis- and trans-cycloöctene oxide with bases[J]. Journal of the American Chemical Society, 2002, 80(11): 2849-2852.
[131] RAMíREZ A, Collum, D. B. Hemi-labile ligands in organolithium chemistry: rate studies of the LDA-mediated α- and β-metalations of epoxides[J]. J. AM. CHEM. SOC. 1999, 121(48): 11114-11121.
[132] CRANDALL J K, APPARU M: Base-promoted isomerizations of epoxides[J] Organic Reactions, 2005: 345-443.
[133] RAPTIS C, GARCIA H, STRATAKIS M. Selective isomerization of epoxides to allylic alcohols catalyzed by TiO2-supported gold nanoparticles[J]. Angewandte Chemie International Edition, 2009, 48(17): 3133-3136.
[134] SáNCHEZ-VELANDIA J E, VILLA A L. Isomerization of α- and β- pinene epoxides over Fe or Cu supported MCM-41 and SBA-15 materials[J]. Applied Catalysis A: General, 2019, 580: 17-27.
[135] DEMIDOVA Y S, ARDASHOV O V, SIMAKOVA O A, et al. Isomerization of bicyclic terpene epoxides into allylic alcohols without changing of the initial structure[J]. Journal of Molecular Catalysis A: Chemical, 2014, 388: 162-166.
[136] ARATA K, TANABE K. Isomerization of 1-methylcyclohexene oxide over solid acids and bases[J]. Chemistry Letters, 1974, 3(8): 923-924.
[137] PAPASTAVROU A T, KIDONAKIS M, STRATAKIS M, et al. Isomerization of epoxides into allylic alcohols catalyzed by supported Au nanoparticles on TiO2: a mechanistic insight[J]. Journal of Organic Chemistry, 2020, 85(20): 13324-13329.
[138] KIDONAKIS M, STRATAKIS M. Regioselective diboration and silaboration of allenes catalyzed by Au nanoparticles[J]. ACS Catalysis, 2018, 8(2): 1227-1230.
[139] COSTA V V, DA SILVA ROCHA K A, DE SOUSA L F, et al. Isomerization of α-pinene oxide over cerium and tin catalysts: Selective synthesis of trans-carveol and trans-sobrerol[J]. Journal of Molecular Catalysis A: Chemical, 2011, 345(1-2): 69-74.
[140] MäKI-ARVELA P, KUMAR N, DIáZ S F, et al. Isomerization of β-pinene oxide over Sn-modified zeolites[J]. Journal of Molecular Catalysis A: Chemical, 2013, 366: 228-237.
[141] ARATA K, TANABE K. Isomerization of cyclohexene oxide over solid acids and bases[J]. Bulletin of the Chemical Society of Japan, 1980, 53(2): 299-303.
[142] SHARPLESS K B, LAUER R F. Mild procedure for the conversion of epoxides to allylic alcohols. First organoselenium reagent[J]. Journal of the American Chemical Society, 2002, 95(8): 2697-2699.
[143] BERMEJO F, SANDOVAL C. Cp2TiCl-promoted isomerization of trisubstituted epoxides to exo-methylene allylic alcohols on carvone derivatives[J]. Journal of Organic Chemistry, 2004, 69(16): 5275-5280.
[144] YAO C, DAHMEN T, GANSAUER A, et al. Anti-Markovnikov alcohols via epoxide hydrogenation through cooperative catalysis[J]. Science, 2019, 364(6442): 764-767.
[145] YE K Y, MCCALLUM T, LIN S. Bimetallic radical redox-relay catalysis for the isomerization of epoxides to allylic alcohols[J]. Journal of the American Chemical Society, 2019, 141(24): 9548-9554.
[146] ENDERS D, THIEBES C. Efficient stereoselective syntheses of piperidine, pyrrolidine, and indolizidine alkaloids[J]. Pure and Applied Chemistry, 2001, 73(3): 573-578.
[147] VEGA-PEñALOZA A, PARIA S, BONCHIO M, et al. Profiling the privileges of pyrrolidine-based catalysts in asymmetric synthesis: from polar to light-driven radical chemistry[J]. ACS Catalysis, 2019, 9(7): 6058-6072.
[148] JENSEN K L, DICKMEISS G, JIANG H, et al. The diarylprolinol silyl ether system: a general organocatalyst[J]. Accounts of Chemical Research, 2011, 45(2): 248-264.
[149] ADRIO J, CARRETERO J C. Stereochemical diversity in pyrrolidine synthesis by catalytic asymmetric 1,3-dipolar cycloaddition of azomethine ylides[J]. Chemical Communications, 2019, 55(80): 11979-11991.
[150] HARTUNG J, GRESZLER S N, KLIX R C, et al. Development of an enantioselective
[3 + 2] cycloaddition to synthesize the pyrrolidine core of ABBV-3221 on Multikilogram scale[J]. Organic Process Research & Development, 2019, 23(11): 2532-2537.
[151] PELLISSIER H. Asymmetric organocatalytic cycloadditions[J]. Tetrahedron, 2012, 68(10): 2197-2232.
[152] DENG H, JIA R, YANG W-L, et al. Ligand-controlled switch in diastereoselectivities: catalytic asymmetric construction of spirocyclic pyrrolidine-azetidine/oxe(thie)tane derivatives[J]. Chemical Communications, 2019, 55(51): 7346-7349.
[153] CALEFFI G S, LARRAñAGA O, FERRáNDIZ-SAPERAS M, et al. Switching diastereoselectivity in catalytic enantioselective (3+2) cycloadditions of azomethine ylides promoted by metal salts and privileged Segphos-derived ligands[J]. The Journal of Organic Chemistry, 2019, 84(17): 10593-10605.
[154] BELABBES A, RETAMOSA M G, FOUBELO F, et al. Pseudo-multicomponent 1,3-dipolar cycloaddition involving metal-free generation of unactivated azomethine ylides[J]. Organic & Biomolecular Chemistry, 2023, 21(9): 1927-1936.
[155] SUZUKI Y, KANEMOTO K, INOUE A, et al. Silver/ThioClickFerrophos-catalyzed 1,3-dipolar cycloaddition and tandem addition–elimination reaction of Morita–Baylis–Hillman adducts[J]. The Journal of Organic Chemistry, 2021, 86(21): 14586-14596.
[156] YANG H, LU S-N, CHEN Z, et al. Silver-mediated
[3 + 2] cycloaddition of azomethine ylides with trifluoroacetimidoyl chlorides for the synthesis of 5-(trifluoromethyl)imidazoles[J]. The Journal of Organic Chemistry, 2021, 86(5): 4361-4370.
[157] KALITA S J, CHENG F, FAN Q-H, et al. Diastereodivergent synthesis of chiral 4-Fluoropyrrolidines (exo and exo’) Based on the Cu(II)-catalyzed asymmetric 1,3-dipolar cycloaddition[J]. The Journal of Organic Chemistry, 2021, 86(13): 8695-8705.
[158] GILL M, DAS A, SINGH V K. Asymmetric umpolung (3+2) cycloadditions of iminoesters with α, β-unsaturated-2-acyl imidazoles for the synthesis of substituted pyrrolidines[J]. Organic Letters, 2022, 24(31): 5629-5634.
[159] CRISTóBAL C, GAVIñA D, ALONSO I, et al. Catalytic enantioselective intramolecular 1,3-dipolar cycloaddition of azomethine ylides with fluorinated dipolarophiles[J]. Chemical Communications, 2022, 58(56): 7805-7808.
[160] HUO X, LI G, WANG X, et al. Bimetallic catalysis in stereodivergent synthesis[J]. Angewandte Chemie International Edition, 2022, 61(45): e202210086.
[161] WANG B-R, LI Y-B, ZHANG Q, et al. Copper(I)-catalyzed asymmetric 1,3-dipolar cycloaddition of 1,3-enynes and azomethine ylides[J]. Nature Communications, 2023, 14(1): 4688-4699.
[162] CHANG X, YANG Y, SHEN C, et al. β-substituted alkenyl heteroarenes as dipolarophiles in the Cu(I)-catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides empowered by a dual activation strategy: stereoselectivity and mechanistic insight[J]. Journal of the American Chemical Society, 2021, 143(9): 3519-3535.
[163] CHENG X, CHANG X, YANG Y, et al. Copper-catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides with β-trifluoromethyl-substituted alkenyl heteroarenes[J]. Science China Chemistry, 2023, 66(11): 3193-3204.
[164] PANDA S S, AZIZ M N, STAWINSKI J, et al. Azomethine ylides-versatile synthons for pyrrolidinyl-heterocyclic compounds[J]. Molecules, 2023, 28(2): 668.
[165] CHANG X, LIU X-T, LI F, et al. Electron-rich benzofulvenes as effective dipolarophiles in copper(I)-catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides[J]. Chemical Science, 2023, 14(20): 5460-5469.
[166] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133-A1138.
[167] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B): B864-B871.
[168] PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, 1992, 45(23): 13244-13249.
[169] PERDEW J P, RUZSINSZKY A, CSONKA G I, et al. Workhorse semilocal density functional for condensed matter physics and quantum chemistry[J]. Physical Review Letters, 2009, 103(2), 026403.
[170] PEVERATI R, TRUHLAR D G. Communication: A global hybrid generalized gradient approximation to the exchange-correlation functional that satisfies the second-order density-gradient constraint and has broad applicability in chemistry[J]. The Journal of Chemical Physics, 2011, 135(19): 191102-191106.
[171] ZHAO Y, TRUHLAR D G. Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions[J]. The Journal of Physical Chemistry A, 2005, 109(25): 5656-5667.
[172] LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B: Condensed Matter, 1988, 37(2): 785-789.
[173] BECKE A D. Density-functional thermochemistry. III. The role of exact exchange[J]. Journal of Chemical Physics, 1993, 98(7): 5648-5652.
[174] ADAMO C, BARONE V. Toward reliable density functional methods without adjustable parameters: The PBE0 model[J]. Journal of Chemical Physics, 1999, 110(13): 6158-6170.
[175] ZHAO Y, TRUHLAR D G. Density functionals with broad applicability in chemistry[J]. Accounts of Chemical Research, 2008, 41(2): 157-167.
[176] CHAI J D, HEAD-GORDON M. Systematic optimization of long-range corrected hybrid density functionals[J]. Journal of Chemical Physics, 2008, 128(8): 084106.
[177] ZHAO Y, TRUHLAR D G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions[J]. Journal of Chemical Physics, 2006, 125(19): 194101.
[178] ZHAO Y, TRUHLAR D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals[J]. Theoretical Chemistry Accounts, 2007, 120(1-3): 215-241.
[179] DUTTA A K, NEESE F, IZSáK R. Towards a pair natural orbital coupled cluster method for excited states[J]. The Journal of Chemical Physics, 2016, 145(3): 034102-034111.
[180] DUTTA A K, NEESE F, IZSáK R. Speeding up equation of motion coupled cluster theory with the chain of spheres approximation[J]. The Journal of Chemical Physics, 2016, 144(3): 034102-034115.
[181] NOOIJEN M, BARTLETT R J. Similarity transformed equation-of-motion coupled-cluster theory: Details, examples, and comparisons[J]. The Journal of Chemical Physics, 1997, 107(17): 6812-6830.
[182] YANAI T, TEW D P, HANDY N C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP)[J]. Chemical Physics Letters, 2004, 393(1-3): 51-57.
[183] CHUNG L W, SAMEERA W M C, RAMOZZI R, et al. The ONIOM method and its applications[J]. Chemical Reviews, 2015, 115(12): 5678-5796.
[184] SENN H M, THIEL W. QM/MM methods for biomolecular systems[J]. Angewandte Chemie International Edition, 2009, 48(7): 1198-1229.
[185] TOMASI J, MENNUCCI B, CAMMI R. Quantum mechanical continuum solvation models[J]. Chemical Reviews, 2005, 105(8): 2999-3093.
[186] MARENICH A V, CRAMER C J, TRUHLAR D G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. Journal of Physical Chemistry B, 2009, 113(18): 6378-6396.
[187] ESS D H, HOUK K N. Distortion/interaction energy control of 1,3-dipolar cycloaddition reactivity[J]. Journal of the American Chemical Society, 2007, 129(35): 10646-10647.
[188] CHANG X P, GAO Y J, FANG W H, et al. Quantum mechanics/molecular mechanics study on the photoreactions of dark- and light-adapted states of a blue-light YtvA LOV photoreceptor[J]. Angewandte Chemie International Edition, 2017, 56(32): 9341-9345.
[189] TOMASI J, PERSICO M. Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent[J]. Chemical Reviews, 2002, 94(7): 2027-2094.
[190] CRAMER C J, TRUHLAR D G. Implicit solvation models:  equilibria, structure, spectra, and dynamics[J]. Chemical Reviews, 1999, 99(8): 2161-2200.
[191] OROZCO M, LUQUE F J. Theoretical methods for the description of the solvent effect in biomolecular systems[J]. Chemical Reviews, 2000, 100(11): 4187-4226.
[192] ZHANG J, ZHANG H, WU T, et al. Comparison of implicit and explicit solvent models for the calculation of solvation free energy in organic solvents[J]. Journal of Chemical Theory and Computation, 2017, 13(3): 1034-1043.
[193] SCALMANI G, FRISCH M J. Continuous surface charge polarizable continuum models of solvation. I. General formalism[J]. Journal of Chemical Physics, 2010, 132(11): 114110.
[194] XIAO L, CHANG X, XU H, et al. Cooperative catalyst‐enabled regio‐ and stereodivergent synthesis of α‐quaternary α‐amino acids via asymmetric allylic alkylation of aldimine esters with racemic allylic alcohols[J]. Angewandte Chemie International Edition, 2022, 61(46): e202212948.
[195] SCIORTINO G, MASERAS F. Factors driving the Ni/Cu cooperative asymmetric propargylation of aldimine esters[J]. Chem Commun (Camb), 2023, 59(43): 6521-6524.
[196] SCIORTINO G, MASERAS F. Computational study of homogeneous multimetallic cooperative catalysis[J]. Topics in Catalysis, 2021, 65(1-4): 105-117.
[197] LI B, XU H, DANG Y, et al. Dispersion and steric effects on enantio-/diastereoselectivities in synergistic dual transition-metal catalysis[J]. Journal of the American Chemical Society, 2022, 144(4): 1971-1985.
[198] GAO F, LI J, AHMAD T, et al. Asymmetric synthesis of bedaquiline based on bimetallic activation and non-covalent interaction promotion strategies[J]. Science China Chemistry, 2022, 65(10): 1968-1977.
[199] BAY K L, YANG Y-F, HOUK K N. Multiple roles of silver salts in palladium-catalyzed C–H activations[J]. Journal of Organometallic Chemistry, 2018, 864: 19-25.
[200] NEESE F. Software update: The ORCA program system—Version 5.0[J]. WIREs Computational Molecular Science, 2022, 12(5): e1606.
[201] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2013.
[202] SALOMON‐FERRER R, CASE D A, WALKER R C. An overview of the Amber biomolecular simulation package[J]. WIREs Computational Molecular Science, 2012, 3(2): 198-210.
[203] SCHRODINGER, LLC. The PyMOL molecular graphics system, Version 1.8, 2015.
[204] DITCHFIELD R, HEHRE W J, POPLE J A. Self‐consistent molecular‐orbital methods. IX. An extended gaussian‐type basis for molecular‐orbital studies of organic molecules[J]. Journal of Chemical Physics, 1971, 54(2): 724-728.
[205] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. Journal of Chemical Physics, 2010, 132(15): 154104.
[206] RIPLINGER C, PINSKI P, BECKER U, et al. Sparse maps--A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory[J]. Journal of Chemical Physics, 2016, 144(2): 024109.
[207] WEIGEND F, AHLRICHS R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy[J]. Physical Chemistry Chemical Physics, 2005, 7(18): 3297-305.
[208] PRACHT P, BOHLE F, GRIMME S. Automated exploration of the low-energy chemical space with fast quantum chemical methods[J]. Physical Chemistry Chemical Physics, 2020, 22(14): 7169-7192.
[209] TAO J, PERDEW J P, STAROVEROV V N, et al. Climbing the density functional ladder: nonempirical meta–generalized gradient approximation designed for molecules and solids[J]. Physical Review Letters, 2003, 91(14): 146401.
[210] CYLview, 1.0b; Legault C Y, Université de Sherbrooke, 2009 (http://www.cylview.org).
[211] LU T, CHEN F. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2011, 33(5): 580-592.
[212] HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38.
[213] JORNER K, Turcani L. elljorner/morfeus: v0.7.2. zenodo, CERN 2022.
[214] POLLICE R, CHEN P. A Universal quantitative descriptor of the dispersion interaction potential[J]. Angewandte Chemie International Edition, 2019, 58(29): 9758-9769.
[215] FRISCH M J, POPLE J A, BINKLEY J S. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets[J]. The Journal of Chemical Physics, 1984, 80(7): 3265-3269.
[216] LUCHINI G, ALEGRE-REQUENA J V, FUNES-ARDOIZ I, et al. GoodVibes: automated thermochemistry for heterogeneous computational chemistry data[J]. F1000Research, 2020, 9: 291.
[217] HARVEY J N, ASCHI M, SCHWARZ H, et al. The singlet and triplet states of phenyl cation. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces[J]. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 1998, 99(2): 95-99.
[218] ANDRAE D, HAUSSERMANN U, DOLG M, et al. Energy-adjusted abinitio pseudopotentials for the 2nd and 3rd row transition-elements[J]. Theoretica Chimica Acta, 1990, 77(2): 123-141.
[219] ZHENG J, XU X, TRUHLAR D G. Minimally augmented Karlsruhe basis sets[J]. Theoretical Chemistry Accounts, 2010, 128(3): 295-305.
[220] SHENG X, HIMO F. Mechanism of 3-methylglutaconyl CoA decarboxylase AibA/AibB: pericyclic reaction versus direct decarboxylation[J]. Angewandte Chemie International Edition, 2020, 59(51): 22973-22977.
[221] PLANAS F, MCLEISH M J, HIMO F. Enzymatic stetter reaction: computational study of the reaction mechanism of MenD[J]. ACS Catalysis, 2021, 11(19): 12355-12366.
[222] BAKOWIES D, THIEL W. Hybrid models for combined quantum mechanical and molecular mechanical approaches[J]. The Journal of Physical Chemistry, 1996, 100(25): 10580-10594.
[223] LU T, CHEN Q. Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems[J]. Journal of Computational Chemistry, 2022, 43(8): 539-555.

所在学位评定分委会
生物学
国内图书分类号
Q50
来源库
人工提交
成果类型学位论文
条目标识符//www.snoollab.com/handle/2SGJ60CL/765864
专题
理学院_化学系
推荐引用方式
GB/T 7714
李方方. 绿色催化羟基化和环加成反应机理的计算研究[D]. 深圳. ,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12131183-李方方-化学系.pdf(11946KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李方方]的文章
百度学术
百度学术中相似的文章
[李方方]的文章
必应学术
必应学术中相似的文章
[李方方]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map