中文版 | English
题名

Attention-based Bidirectional Long Short-Term Memory for Urban Traffic Prediction Using Multivariate Data

作者
通讯作者Yang, Lili
DOI
发表日期
2023
会议名称
3rd International Conference on Artificial Intelligence, Virtual Reality, and Visualization, AIVRV 2023
ISSN
0277-786X
EISSN
1996-756X
ISBN
9781510671485
会议录名称
卷号
12923
会议日期
July 7, 2023 - July 9, 2023
会议地点
Chongqing, China
会议录编者/会议主办者
Academic Exchange Information Centre (AEIC); Chengdu University of Information Technology
出版者
摘要
With the continuous expansion of urban and population size, the external cost of traffic congestion is increasing daily. Urban traffic prediction using multivariate data is significant in solving these problems. However, traditional prediction methods are mostly based on merely statistical theory, which only includes a single variable, resulting in the precision accuracy not being guaranteed. Therefore, based on machine learning theory, this paper collects multivariate traffic data from the main sections of Shenzhen, China. With the help of the advantages of deep learning model in data analysis, urban traffic prediction using multivariate data is proposed based on considering the characteristics of multi-parameters, which solves the problem that the traffic prediction method is mainly based on a single variable and the auxiliary information is not considered enough. To fully consider the spatial-temporal characteristics of the traffic dataset, an ABi-LSTM prediction method concerning the influence of upstream and downstream road sections is proposed, solving the problem of low prediction accuracy caused by imperfect consideration of spatial-temporal characteristics in previous traffic predictions. The results provide an important reference for traffic management departments to alleviate traffic congestion effectively, moreover, it’s convenient for residents to understand road information more clearly and make reasonable travel choices.

© 2023 SPIE.

学校署名
第一 ; 通讯
语种
英语
收录类别
资助项目
The authors confirm their contribution to the paper as follows: study conception and design: M. Yang, Q. Wang, L. Yang, Z. Huang ; data collection: M. Yang, L. Yang ; analysis and interpretation of results: M. Yang, Q. Wang, L. Yang ; draft manuscript preparation: M. Yang, Q. Wang, L. Yang, Z. Huang. Thanks to the support of Key Laboratory Project whose project number is ZDSYS20210623092007023. All authors reviewed the results and approved the final version of the manuscript.
EI入藏号
20234815136590
EI主题词
Brain ; Forecasting ; Learning Systems ; Motor Transportation ; Population Statistics ; Roads And Streets ; Traffic Congestion
EI分类号
Roads And Streets:406.2 ; Biomedical Engineering:461.1
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符//www.snoollab.com/handle/2SGJ60CL/706859
专题理学院_统计与数据科学系
作者单位
Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen, China
第一作者单位统计与数据科学系
通讯作者单位统计与数据科学系
第一作者的第一单位统计与数据科学系
推荐引用方式
GB/T 7714
Yang, Mingyang,Wang, Qianqian,Yang, Lili,et al. Attention-based Bidirectional Long Short-Term Memory for Urban Traffic Prediction Using Multivariate Data[C]//Academic Exchange Information Centre (AEIC); Chengdu University of Information Technology:SPIE,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Attention-based bidi(1791KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang, Mingyang]的文章
[Wang, Qianqian]的文章
[Yang, Lili]的文章
百度学术
百度学术中相似的文章
[Yang, Mingyang]的文章
[Wang, Qianqian]的文章
[Yang, Lili]的文章
必应学术
必应学术中相似的文章
[Yang, Mingyang]的文章
[Wang, Qianqian]的文章
[Yang, Lili]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map