中文版 | English
题名

Bi-fidelity evolutionary multiobjective search for adversarially robust deep neural architectures

作者
通讯作者Jin,Yaochu
发表日期
2023-09-14
DOI
发表期刊
ISSN
0925-2312
EISSN
1872-8286
卷号550
摘要
Deep neural networks have been found vulnerable to adversarial attacks, thus raising potential concerns in security-sensitive contexts. To address this problem, recent research has investigated the adversarial robustness of deep neural networks from the architectural point of view. However, searching for architectures of deep neural networks is computationally expensive, particularly when coupled with an adversarial training process. To meet the above challenge, this paper proposes a bi-fidelity multiobjective neural architecture search approach. First, we formulate the neural architecture search (NAS) problem for enhancing the adversarial robustness of deep neural networks into a multiobjective optimization problem. Specifically, in addition to using low-fidelity estimations as the primary objectives, we leverage the output of a surrogate model trained with high-fidelity evaluations as an auxiliary objective. Secondly, we reduce the computational cost by combining three performance estimation methods, i.e., parameter sharing, low-fidelity evaluation, and surrogate-based predictor. The effectiveness of the proposed approach is confirmed by extensive experiments conducted on CIFAR-10, CIFAR-100 and SVHN datasets.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:001035085900001
出版者
EI入藏号
20232814388615
EI主题词
Architecture ; Multiobjective optimization ; Network architecture
EI分类号
Buildings and Towers:402 ; Ergonomics and Human Factors Engineering:461.4 ; Optimization Techniques:921.5
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85164294065
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符//www.snoollab.com/handle/2SGJ60CL/559615
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science,University of Surrey,Guildford,United Kingdom
2.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
3.Faculty of Technology,Bielefeld University,Bielefeld,Germany
推荐引用方式
GB/T 7714
Liu,Jia,Cheng,Ran,Jin,Yaochu. Bi-fidelity evolutionary multiobjective search for adversarially robust deep neural architectures[J]. Neurocomputing,2023,550.
APA
Liu,Jia,Cheng,Ran,&Jin,Yaochu.(2023).Bi-fidelity evolutionary multiobjective search for adversarially robust deep neural architectures.Neurocomputing,550.
MLA
Liu,Jia,et al."Bi-fidelity evolutionary multiobjective search for adversarially robust deep neural architectures".Neurocomputing 550(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu,Jia]的文章
[Cheng,Ran]的文章
[Jin,Yaochu]的文章
百度学术
百度学术中相似的文章
[Liu,Jia]的文章
[Cheng,Ran]的文章
[Jin,Yaochu]的文章
必应学术
必应学术中相似的文章
[Liu,Jia]的文章
[Cheng,Ran]的文章
[Jin,Yaochu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map