中文版 | English
题名

Global Sources and Impacts of Absorptive Components in Atmospheric Organic Aerosols

姓名
姓名拼音
Li Yumin
学号
11951004
学位类型
博士
学位专业
Environmental Science, Policy and Management
导师
傅宗玫
导师单位
环境科学与工程学院
外机构导师
郁建珍
外机构导师单位
香港科技大学
论文答辩日期
2023-08-16
论文提交日期
2023-08-30
学位授予单位
香港科技大学
学位授予地点
香港
摘要

Organic aerosols (OA) are ubiquitous in the troposphere with profound impacts on public health, climate, and the global biogeochemical cycle. However, these environmental impacts of OA remain uncertain because the global sources, abundances, atmospheric evolution, depositions, and radiative properties of OA are not well quantified. In particular, OA are complex mixtures that evolve through atmospheric aging, making them difficult to identify and quantify. Due to measurement limitations, the sources of the absorptive components of OA are not well understood. This thesis aims to quantify the global sources of the absorptive components in atmospheric OA to better assess their climate effects.

Biomass burning is a significant source of absorptive OA in the atmosphere. While previous studies have used levoglucosan to quantitatively assess the contribution of biomass burning to ambient OA, they did not consider levoglucosan’s chemical degradation in the atmosphere. To address this limitation, I developed the first global simulation of atmospheric levoglucosan that explicitly accounted for its chemical degradation, with the goal of evaluating the impacts on the use of levoglucosan as a tracer in quantitative aerosol source apportionment. Levoglucosan was emitted into the atmosphere from the burning of plant matter in open fires (1.7 Tg yr-1) and as biofuels (2.1 Tg yr-1). Atmospheric sinks of levoglucosan included aqueous-phase oxidation (2.9 Tg yr‑1), heterogeneous oxidation (0.16 Tg yr-1), gas-phase oxidation (1.4 × 10-4 Tg yr-1), and dry and wet deposition (0.27 and 0.43 Tg yr-1, respectively). The global atmospheric burden of levoglucosan was 19 Gg with a lifetime of 1.8 days. Observations showed a sharp decline in levoglucosan’s concentrations and its relative abundance to organic carbon aerosol (OC) and particulate K+ from near-source to remote sites; such features could only be reproduced when levoglucosan’s chemical degradation was included in the model. Using model results, I developed statistical parameterizations to account for the atmospheric degradation in levoglucosan measurements, improving their use for quantitative aerosol source apportionment.

Atmospheric particulate organic nitrogen (ONp) is thought to be the dominant colored component of atmospheric brown carbon aerosol (BrC), which affects the radiative balance of Earth’s climate system. Atmospheric deposition of ONp is also a significant process in the global nitrogen cycle and may be pivotally important for N-limited ecosystems. However, the global environmental impacts of atmospheric ONp are still unclear because past models largely overlooked the spatial and chemical inhomogeneity of atmospheric ONp and were severely deficient in assessing global ONp impacts. To address this gap, I constructed a comprehensive global model of atmospheric gaseous and particulate organic nitrogen (ON), which includes the latest knowledge on emissions and secondary formations. The model successfully simulated the global abundance and deposition fluxes of atmospheric ONp and estimated the global atmospheric ON deposition to be 26 Tg N yr-1, predominantly in the form of ONp (23 Tg N yr-1) and originating primarily from wildfires (37%), oceans (22%), and aqueous productions (17%). Globally, ONp contributed as high as 40% to 80% of the total N deposition downwind of biomass burning regions. Atmospheric ONp deposition thus constituted the dominant external N supply to the N-limited boreal forests, tundras, and the Arctic Ocean, and its importance may amplify in a future warming climate.

Based on my global ONp simulation, I evaluated the contribution of absorptive ONp components, hereafter referred to as brown nitrogen (BrN), to the global radiative impacts of absorptive organic aerosols, hereafter referred to as brown carbon aerosols (BrC). Previous studies of the radiative effects of BrC did not account for the chemical origins of BrC’s evolving optical properties and thus were unable to attribute the sources of the global radiative effects of BrC. I showed that BrN accounted for 76% of the light absorption of BrC in North America when atmospheric aging was considered. Globally, BrN contributed 15% and 6% of the total BrN and BC absorptive aerosol optical depth at 440 nm and 675 nm, respectively. The clean-sky direct radiative effect of BrN was estimated to be 0.03 W m-2, with biomass burning BrN being the dominate contributor (0.015 W m-2), followed by secondary imine BrN (0.009 W m-2). The global mean ratio of the direct radiative effect of BrN versus that of black carbon (BC) was 17% (range 3% to 59%). My findings suggested that BrN has a significant impact on the direct radiative forcing of aerosols in regions dominated by biomass burning, such as the northern boreal forests and the Southern Hemisphere.

关键词
语种
英语
培养类别
联合培养
入学年份
2019
学位授予年份
2023-11
参考文献列表

United Nations (UN) Data Portal, EnergyStatistics Database., in, United Nations Statistics Division (UNSD), 2015.Alexander, B., Allman, D. J., Amos, H. M., Fairlie, T. D., Dachs, J., Hegg, D. A., and Sletten, R. S. Isotopic constraints on the formation pathways of sulfate aerosol in the marine boundary layer of the subtropical northeast Atlantic Ocean. Journal of Geophysical Research-Atmospheres, 2012, 117.Altieri, Katye E., Fawcett, Sarah E., Peters, Andrew J., Sigman, Daniel M., and Hastings, Meredith G. Marine biogenic source of atmospheric organic nitrogen in the subtropical North Atlantic. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, (4), 925-930.Amos, H. M., Jacob, D. J., Holmes, C. D., Fisher, J. A., Wang, Q., Yantosca, R. M., Corbitt, E. S., Galarneau, E., Rutter, A. P., Gustin, M. S., Steffen, A., Schauer, J. J., Graydon, J. A., St Louis, V. L., Talbot, R. W., Edgerton, E. S., Zhang, Y., and Sunderland, E. M. Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition. Atmospheric Chemistry and Physics, 2012, 12, (1), 591-603.An, Y. Q., Xu, J. Z., Feng, L., Zhang, X. H., Liu, Y. M., Kang, S. C., Jiang, B., and Liao, Y. H. Molecular characterization of organic aerosol in the Himalayas: insight from ultra-high-resolution mass spectrometry. Atmospheric Chemistry and Physics, 2019, 19, (2), 1115-1128.Andreae, M. O. Emission of trace gases and aerosols from biomass burning - an updated assessment. Atmospheric Chemistry and Physics, 2019, 19, (13), 8523-8546.Arakaki, T., Anastasio, C., Kuroki, Y., Nakajima, H., Okada, K., Kotani, Y., Handa, D., Azechi, S., Kimura, T., Tsuhako, A., and Miyagi, Y. A General scavenging rate constant for reaction of hydroxyl radical with organic carbon in atmospheric waters. Environmental Science & Technology, 2013, 47, (15), 8196-8203.Arangio, A. M., Slade, J. H., Berkemeier, T., Poschl, U., Knopf, D. A., and Shiraiwa, M. Multiphase chemical kinetics of OH radical uptake by molecular organic markers of biomass burning aerosols: humidity and temperature dependence, surface reaction, and bulk diffusion. Journal of Physical Chemistry A, 2015, 119, (19), 4533-4544.Aranguren-Gassis, Maria, Kremer, Colin T., Klausmeier, Christopher A., and Litchman, Elena. Nitrogen limitation inhibits marine diatom adaptation to high temperatures. Ecology Letters, 2019, 22, (11), 1860-1869.Ardyna, Mathieu, and Arrigo, Kevin Robert. Phytoplankton dynamics in a changing Arctic Ocean. Nature Climate Change, 2020, 10, (10), 892-903.Ayres, B. R., Allen, H. M., Draper, D. C., Brown, S. S., Wild, R. J., Jimenez, J. L., Day, D. A., Campuzano-Jost, P., Hu, W., de Gouw, J., Koss, A., Cohen, R. C., Duffey, K. C., Romer, P., Baumann, K., Edgerton, E., Takahama, S., Thornton, J. A., Lee, B. H., Lopez-Hilfiker, F. D., Mohr, C., Wennberg, P. O., Nguyen, T. B., Teng, A., Goldstein, A. H., Olson, K., and Fry, J. L. Organic nitrate aerosol formation via NO3 + biogenic volatile organic compounds in the southeastern United States. Atmospheric Chemistry and Physics, 2015, 15, (23), 13377-13392.Bai, J., Sun, X. M., Zhang, C. X., Xu, Y. S., and Qi, C. S. The OH-initiated atmospheric reaction mechanism and kinetics for levoglucosan emitted in biomass burning. Chemosphere, 2013, 93, (9), 2004-2010.Baker, A. R., Adams, C., Bell, T. G., Jickells, T. D., and Ganzeveld, L. Estimation of atmospheric nutrient inputs to the Atlantic Ocean from 50 degrees N to 50 degrees S based on large-scale field sampling: Iron and other dust-associated elements. Global Biogeochemical Cycles, 2013, 27, (3), 755-767.Bari, M. A., Baumbach, G., Kuch, B., and Scheffknecht, G. Temporal variation and impact of wood smoke pollution on a residential area in southern Germany. Atmospheric Environment, 2010, 44, (31), 3823-3832.Barten, J. G. M., Ganzeveld, L. N., Visser, A. J., Jimenez, R., and Krol, M. C. Evaluation of nitrogen oxides (NOx) sources and sinks and ozone production in Colombia and surrounding areas. Atmospheric Chemistry and Physics, 2020, 20, (15), 9441-9458.Bates, K. H., and Jacob, D. J. A new model mechanism for atmospheric oxidation of isoprene: global effects on oxidants, nitrogen oxides, organic products, and secondary organic aerosol. Atmospheric Chemistry and Physics, 2019, 19, (14), 9613-9640.Bauters, Marijn, Drake, Travis W., Verbeeck, Hans, Bode, Samuel, Herve-Fernandez, Pedro, Zito, Phoebe, Podgorski, David C., Boyemba, Faustin, Makelele, Isaac, Ntaboba, Landry Cizungu, Spencer, Robert G. M., and Boeckx, Pascal. High fire-derived nitrogen deposition on central African forests. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, (3), 549-554.Bencs, Laszlo, Krata, Agnieszka, Horemans, Benjamin, Buczynska, Anna J., Dirtu, Alin C., Godoi, Ana F. L., Godoi, Ricardo H. M., Potgieter-Vermaak, Sanja, and Van Grieken, Rene. Atmospheric nitrogen fluxes at the Belgian coast: 2004-2006. Atmospheric Environment, 2009, 43, (24), 3786-3798.Benitez, Juan M. Gonzalez, Cape, J. Neil, Heal, Mathew R., van Dijk, Netty, and Diez, Alberto Vidal. Atmospheric nitrogen deposition in south-east Scotland: Quantification of the organic nitrogen fraction in wet, dry and bulk deposition. Atmospheric Environment, 2009, 43, (26), 4087-4094.Benitez, Juan M. Gonzalez, Cape, J. Neil, and Heal, Mathew R. Gaseous and particulate water-soluble organic and inorganic nitrogen in rural air in southern Scotland. Atmospheric Environment, 2010, 44, (12), 1506-1514.Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G. Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation. Journal of Geophysical Research-Atmospheres, 2001, 106, (D19), 23073-23095.Bhattarai, H., Saikawa, E., Wan, X., Zhu, H. X., Ram, K., Gao, S. P., Kang, S. C., Zhang, Q. G., Zhang, Y. L., Wu, G. M., Wang, X. P., Kawamura, K., Fu, P. Q., and Cong, Z. Y. Levoglucosan as a tracer of biomass burning: Recent progress and perspectives. Atmospheric Research, 2019, 220, 20-33.Bianco, A., Passananti, M., Brigante, M., and Mailhot, G. Photochemistry of the cloud aqueous phase: a review. Molecules, 2020, 25, (2).Bluvshtein, Nir, Lin, Peng, Flores, J. Michel, Segev, Lior, Mazar, Yinon, Tas, Eran, Snider, Graydon, Weagle, Crystal, Brown, Steven S., Laskin, Alexander, and Rudich, Yinon. Broadband optical properties of biomass-burning aerosol and identification of brown carbon chromophores. Journal of Geophysical Research-Atmospheres, 2017, 122, (10), 5441-5456.Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J. H., and Klimont, Z. A technology-based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research-Atmospheres, 2004, 109, (D14).Bond, T. C., Habib, G., and Bergstrom, R. W. Limitations in the enhancement of visible light absorption due to mixing state. Journal of Geophysical Research-Atmospheres, 2006, 111, (D20).Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S. K., Roden, C., Streets, D. G., and Trautmann, N. M. Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000. Global Biogeochemical Cycles, 2007, 21, (2).Booth, A. M., Montague, W. J., Barley, M. H., Topping, D. O., McFiggans, G., Garforth, A., and Percival, C. J. Solid state and sub-cooled liquid vapour pressures of cyclic aliphatic dicarboxylic acids. Atmospheric Chemistry and Physics, 2011, 11, (2), 655-665.Boreddy, S. K. R., and Kawamura, K. A 12-year observation of water-soluble ions in TSP aerosols collected at a remote marine location in the western North Pacific: an outflow region of Asian dust. Atmospheric Chemistry and Physics, 2015, 15, (11), 6437-6453.Bronk, D. A., See, J. H., Bradley, P., and Killberg, L. DON as a source of bioavailable nitrogen for phytoplankton. Biogeosciences, 2007, 4, (3), 283-296.Brook, R. D. Cardiovascular effects of air pollution. Clinical Science, 2008, 115, (5-6), 175-187.Browne, E. C., Perring, A. E., Wooldridge, P. J., Apel, E., Hall, S. R., Huey, L. G., Mao, J., Spencer, K. M., St Clair, J. M., Weinheimer, A. J., Wisthaler, A., and Cohen, R. C. Global and regional effects of the photochemistry of CH3O2NO2: evidence from ARCTAS. Atmospheric Chemistry and Physics, 2011, 11, (9), 4209-4219.Browne, Eleanor C., Zhang, Xiaolu, Franklin, Jonathan P., Ridley, Kelsey J., Kirchstetter, Thomas W., Wilson, Kevin R., Cappa, Christopher D., and Kroll, Jesse H. Effect of heterogeneous oxidative aging on light absorption by biomass burning organic aerosol. Aerosol Science and Technology, 2019, 53, (6), 663-674.Burki, C., Reggente, M., Dillner, A. M., Hand, J. L., Shaw, S. L., and Takahama, S. Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: method development for probabilistic modeling of organic carbon and organic matter concentrations. Atmospheric Measurement Techniques, 2020, 13, (3), 1517-1538.Cabrera-Perez, David, Taraborrelli, Domenico, Sander, Rolf, and Pozzer, Andrea. Global atmospheric budget of simple monocyclic aromatic compounds. Atmospheric Chemistry and Physics, 2016, 16, (11), 6931-6947.Calderon, Silvia M., Poor, Noreen D., and Campbell, Scott W. Investigation of the ultraviolet photolysis method for the determination of organic nitrogen in aerosol samples. Journal of the Air & Waste Management Association, 2006, 56, (9), 1278-1286.Calderon, Silvia M., Poor, Noreen D., and Campbell, Scott W. Estimation of the particle and gas scavenging contributions to wet deposition of organic nitrogen. Atmospheric Environment, 2007, 41, (20), 4281-4290.Canadell, J. G., Monteiro, P. M. S., Costa, M. H., Cotrim da Cunha, L., Cox, P. M., Eliseev, A. V., Henson, S., Ishii, M., Jaccard, S., Koven, C., Lohila, A., Patra, P. K., Piao, S., Rogelj, J., Syampungani, S., Zaehle, S., and Zickfeld, K.: Global Carbon and other Biogeochemical Cycles and Feedbacks, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 673–816, 2021.Cape, J. N., Tang, Y. S., Gonzalez-Benitez, J. M., Mitosinkova, M., Makkonen, U., Jocher, M., and Stolk, A. Organic nitrogen in precipitation across Europe. Biogeosciences, 2012, 9, (11), 4401-4409.Cape, JN, Cornell, SE, Jickells, TD, and Nemitz, E %J Atmospheric Research. Organic nitrogen in the atmosphere—Where does it come from? A review of sources and methods. Atmospheric Research, 2011, 102, (1-2), 30-48.Caseiro, A., Bauer, H., Schmidl, C., Pio, C. A., and Puxbaum, H. Wood burning impact on PM10 in three Austrian regions. Atmospheric Environment, 2009, 43, (13), 2186-2195.Cecinato, A., Di Palo, V., Pomata, D., Sciano, M. C. T., and Possanzini, M. Measurement of phase-distributed nitrophenols in Rome ambient air. Chemosphere, 2005, 59, (5), 679-683.Chantara, S., Thepnuan, D., Wiriya, W., Prawan, S., and Tsai, Y. I. Emissions of pollutant gases, fine particulate matters and their significant tracers from biomass burning in an open-system combustion chamber. Chemosphere, 2019, 224, 407-416.Chen, Hung-Yu, and Chen, Liang-De. Occurrence of water soluble organic nitrogen in aerosols at a coastal area. Journal of Atmospheric Chemistry, 2010, 65, (1), 49-71.Chen, J. M., Li, C. L., Ristovski, Z., Milic, A., Gu, Y. T., Islam, M. S., Wang, S. X., Hao, J. M., Zhang, H. F., He, C. R., Guo, H., Fu, H. B., Miljevic, B., Morawska, L., Thai, P., Fat, Lamy, Pereira, G., Ding, A. J., Huang, X., and Dumka, U. C. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Science of the Total Environment, 2017, 579, 1000-1034.Chen, Jing, Kawamura, Kimitaka, Liu, Cong-Qiang, and Fu, Pingqing. Long-term observations of saccharides in remote marine aerosols from the western North Pacific: A comparison between 1990-1993 and 2006-2009 periods. Atmospheric Environment, 2013, 67, 448-458.Chen, Lung-Wen Antony, Chow, Judith C., Wang, Xiaoliang, Cao, Junji, Mao, Jingqiu, and Watson, John G. Brownness of Organic Aerosol over the United States: Evidence for Seasonal Biomass Burning and Photobleaching Effects. Environmental Science & Technology, 2021, 55, (13), 8561-8572.Chen, Neng-Wang, Hong, Hua-Sheng, and Zhang, Luo-Ping. Wet deposition of atmospheric nitrogen in Jiulong River Watershed. Huan jing ke xue, 2008, 29, (1), 38-46.Chen, Xi, Xie, Mingjie, Hays, Michael D, Edgerton, Eric, Schwede, Donna, Walker, John T %J Atmospheric Chemistry, and Physics. Characterization of organic nitrogen in aerosols at a forest site in the southern Appalachian Mountains. 2018, 18, (9), 6829-6846.Chen, Ying, Mills, Sally, Street, Joseph, Golan, Dorit, Post, Anton, Jacobson, Mark, and Paytan, Adina. Estimates of atmospheric dry deposition and associated input of nutrients to Gulf of Aqaba seawater. Journal of Geophysical Research-Atmospheres, 2007, 112, (D4).Chen, You-Xin, Chen, Hung-Yu, Wang, Wei, Yeh, Jun-Xian, Chou, Wen-Chen, Gong, Gwo-Ching, Tsai, Fu-Jung, Huang, Shih-Jen, and Lin, Cheng-Ting. Dissolved organic nitrogen in wet deposition in a coastal city (Keelung) of the southern East China Sea: Origin, molecular composition and flux. Atmospheric Environment, 2015, 112, 20-31.Chen, Yuntao, Chen, Yanfang, Xie, Xinchun, Ye, Zhaolian, Li, Qing, Ge, Xinlei, and Chen, Mindong. Chemical Characteristics of PM2.5 and Water-Soluble Organic Nitrogen in Yangzhou, China. Atmosphere, 2019, 10, (4).Cheng, Y., Engling, G., He, K. B., Duan, F. K., Ma, Y. L., Du, Z. Y., Liu, J. M., Zheng, M., and Weber, R. J. Biomass burning contribution to Beijing aerosol. Atmospheric Chemistry and Physics, 2013, 13, (15), 7765-7781.Cheng, Yu, Li, Shao-Meng, and Leithead, Amy. Chemical characteristics and origins of nitrogen-containing organic compounds in PM2.5 aerosols in the Lower Fraser Valley. Environmental Science & Technology, 2006, 40, (19), 5846-5852.Chow, Ka Shing, Huang, X. H. Hilda, and Yu, Jian Zhen. Quantification of nitroaromatic compounds in atmospheric fine particulate matter in Hong Kong over 3 years: field measurement evidence for secondary formation derived from biomass burning emissions. Environmental Chemistry, 2016, 13, (4), 665-673.Christian, Klingenberg, Alexander, Kurganov, Yongle, Liu, and Markus, Zenk. Moving-Water Equilibria Preserving HLL-Type Schemes for the Shallow Water Equations. Communications in Mathematical Research, 2020, 36, (3), 247-271.Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V., Cafmeyer, J., Guyon, P., Andreae, M. O., Artaxo, P., and Maenhaut, W. Formation of secondary organic aerosols through photooxidation of isoprene. Science, 2004, 303, (5661), 1173-1176.Claeys, M., Kourtchev, I., Pashynska, V., Vas, G., Vermeylen, R., Wang, W., Cafmeyer, J., Chi, X., Artaxo, P., Andreae, M. O., and Maenhaut, W. Polar organic marker compounds in atmospheric aerosols during the LBA-SMOCC 2002 biomass burning experiment in Rondonia, Brazil: sources and source processes, time series, diel variations and size distributions. Atmospheric Chemistry and Physics, 2010, 10, (19), 9319-9331.Claeys, M., Vermeylen, R., Yasmeen, F., Gomez-Gonzalez, Y., Chi, X. G., Maenhaut, W., Meszaros, T., and Salma, I. Chemical characterisation of humic-like substances from urban, rural and tropical biomass burning environments using liquid chromatography with UV/vis photodiode array detection and electrospray ionisation mass spectrometry. Environmental Chemistry, 2012, 9, (3), 273-284.Clemente, Rafael, and Bernal, M. Pilar. Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids. Chemosphere, 2006, 64, (8), 1264-1273.Cong, Z., Kang, S., Kawamura, K., Liu, B., Wan, X., Wang, Z., Gao, S., and Fu, P. Carbonaceous aerosols on the south edge of the Tibetan Plateau: concentrations, seasonality and sources. Atmospheric Chemistry and Physics, 2015, 15, (3), 1573-1584.Cornell, S., Mace, K., Coeppicus, S., Duce, R., Huebert, B., Jickells, T., and Zhuang, L. Z. Organic nitrogen in Hawaiian rain and aerosol. Journal of Geophysical Research-Atmospheres, 2001, 106, (D8), 7973-7983.Cornell, Sarah E. Atmospheric nitrogen deposition: revisiting the question of the importance of the organic component. Environmental Pollution, 2011, 159, (10), 2214-2222.Curry, L. A., Tsui, W. G., and McNeill, V. F. Technical note: updated parameterization of the reactive uptake of glyoxal and methylglyoxal by atmospheric aerosols and cloud droplets. Atmospheric Chemistry and Physics, 2018, 18, (13), 9823-9830.Dall'Osto, M., Ovadnevaite, J., Paglione, M., Beddows, D. C. S., Ceburnis, D., Cree, C., Cortes, P., Zamanillo, M., Nunes, S. O., Perez, G. L., Ortega-Retuerta, E., Emelianov, M., Vaque, D., Marrase, C., Estrada, M., Sala, M. M., Vidal, M., Fitzsimons, M. F., Beale, R., Airs, R., Rinaldi, M., Decesari, S., Facchini, M. C., Harrison, R. M., O'Dowd, C., and Simo, R. Antarctic sea ice region as a source of biogenic organic nitrogen in aerosols. Scientific Reports, 2017, 7, 10.De Haan, D. O., Hawkins, L. N., Kononenko, J. A., Turley, J. J., Corrigan, A. L., Tolbert, M. A., and Jimenez, J. L. Formation of nitrogen-containing oligomers by methylglyoxal and amines in simulated evaporating cloud droplets. Environmental Science & Technology, 2011, 45, (3), 984-991.De Haan, David O., Hawkins, Lelia N., Welsh, Hannah G., Pednekar, Raunak, Casar, Jason R., Pennington, Elyse A., de Loera, Alexia, Jimenez, Natalie G., Symons, Michael A., Zauscher, Melanie, Pajunoja, Aki, Caponi, Lorenzo, Cazaunau, Mathieu, Formenti, Paola, Gratien, Aline, Pangui, Edouard, and Doussin, Jean-Francois. Brown Carbon Production in Ammonium-or Amine-Containing Aerosol Particles by Reactive Uptake of Methylglyoxal and Photolytic Cloud Cycling. Environmental Science & Technology, 2017, 51, (13), 7458-7466.De Haan, David O., Tapavicza, Enrico, Riva, Matthieu, Cui, Tianqu, Surratt, Jason D., Smith, Adam C., Jordan, Mary-Caitlin, Nilakantan, Shiva, Almodovar, Marisol, Stewart, Tiffany N., de Loera, Alexia, De Haan, Audrey C., Cazaunau, Mathieu, Gratien, Aline, Pangui, Edouard, and Doussin, Jean-Francois. Nitrogen-Containing, Light-Absorbing Oligomers Produced in Aerosol Particles Exposed to Methylglyoxal, Photolysis, and Cloud Cycling. Environmental Science & Technology, 2018, 52, (7), 4061-4071.De Haan, David O., Hawkins, Lelia N., Jansen, Kevin, Welsh, Hannah G., Pednekar, Raunak, de Loera, Alexia, Jimenez, Natalie G., Tolbert, Margaret A., Cazaunau, Mathieu, Gratien, Aline, Berge, Antonin, Pangui, Edouard, Formenti, Paola, and Doussin, Jean-Francois. Glyoxal's impact on dry ammonium salts: fast and reversible surface aerosol browning. Atmospheric Chemistry and Physics, 2020, 20, (15), 9581-9590.Diapouli, E., Popovicheva, O., Kistler, M., Vratolis, S., Persiantseva, N., Timofeev, M., Kasper-Giebl, A., and Eleftheriadis, K. Physicochemical characterization of aged biomass burning aerosol after long-range transport to Greece from large scale wildfires in Russia and surrounding regions, Summer 2010. Atmospheric Environment, 2014, 96, 393-404.Du, Enzai, Terrer, Cesar, Pellegrini, Adam F. A., Ahlstrom, Anders, van Lissa, Caspar J., Zhao, Xia, Xia, Nan, Wu, Xinhui, and Jackson, Robert B. Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 2020, 13, (3), 221.Du, Yuhan, Guo, Peng, Liu, Jianqiu, Wang, Chunyu, Yang, Ning, and Jiao, Zhenxia. Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests. Global Change Biology, 2014, 20, (10), 3222-3228.Duan, Fengkui, Liu, Xiande, He, Kebin, and Dong, Shuping. Measurements and Characteristics of Nitrogen-Containing Compounds in Atmospheric Particulate Matter in Beijing, China. Bulletin of Environmental Contamination and Toxicology, 2009, 82, (3), 332-337.Duce, R. A., LaRoche, J., Altieri, K., Arrigo, K. R., Baker, A. R., Capone, D. G., Cornell, S., Dentener, F., Galloway, J., Ganeshram, R. S., Geider, R. J., Jickells, T., Kuypers, M. M., Langlois, R., Liss, P. S., Liu, S. M., Middelburg, J. J., Moore, C. M., Nickovic, S., Oschlies, A., Pedersen, T., Prospero, J., Schlitzer, R., Seitzinger, S., Sorensen, L. L., Uematsu, M., Ulloa, O., Voss, M., Ward, B., and Zamora, L. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science, 2008, 320, (5878), 893-897.Eastham, Sebastian D., Long, Michael S., Keller, Christoph A., Lundgren, Elizabeth, Yantosca, Robert M., Zhuang, Jiawei, Li, Chi, Lee, Colin J., Yannetti, Matthew, Auer, Benjamin M., Clune, Thomas L., Kouatchou, Jules, Putman, William M., Thompson, Matthew A., Trayanov, Atanas L., Molod, Andrea M., Martin, Randall V., and Jacob, Daniel J. GEOS-Chem High Performance (GCHP v11-02c): a next-generation implementation of the GEOS-Chem chemical transport model for massively parallel applications. Geoscientific Model Development, 2018, 11, (7), 2941-2953.Espitia-Pérez, Lyda, Jiménez-Vidal, Luisa, and Espitia-Pérez, Pedro: Particulate Matter Exposure: Genomic Instability, Disease, and Cancer Risk, in: Environmental Health-Management and Prevention Practices, IntechOpen, 2019.Facchini, Maria Cristina, Decesari, Stefano, Rinaldi, Matteo, Carbone, Claudio, Finessi, Emanuela, Mircea, Mihaela, Fuzzi, Sandro, Moretti, Fabio, Tagliavini, Emilio, Ceburnis, Darius, and O'Dowd, Colin D. Important Source of Marine Secondary Organic Aerosol from Biogenic Amines. Environmental Science & Technology, 2008a, 42, (24), 9116-9121.Facchini, Maria Cristina, Rinaldi, Matteo, Decesari, Stefano, Carbone, Claudio, Finessi, Emanuela, Mircea, Mihaela, Fuzzi, Sandro, Ceburnis, Darius, Flanagan, Robert, Nilsson, E. Douglas, de Leeuw, Gerrit, Martino, Manuela, Woeltjen, Janina, and O'Dowd, Colin D. Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates. Geophysical Research Letters, 2008b, 35, (17).Fairlie, T. D., Jacob, D. J., and Park, R. J. The impact of transpacific transport of mineral dust in the United States. Atmospheric Environment, 2007, 41, (6), 1251-1266.Fairlie, T. D., Jacob, D. J., Dibb, J. E., Alexander, B., Avery, M. A., van Donkelaar, A., and Zhang, L. Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes. Atmospheric Chemistry and Physics, 2010, 10, (8), 3999-4012.Fang, Y. T., Gundersen, P., Mo, J. M., and Zhu, W. X. Input and output of dissolved organic and inorganic nitrogen in subtropical forests of South China under high air pollution. Biogeosciences, 2008, 5, (2), 339-352.Favez, O., El Haddad, I., Piot, C., Boreave, A., Abidi, E., Marchand, N., Jaffrezo, J. L., Besombes, J. L., Personnaz, M. B., Sciare, J., Wortham, H., George, C., and D'Anna, B. Inter-comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France). Atmospheric Chemistry and Physics, 2010, 10, (12), 5295-5314.Feng, Xu, Lin, Haipeng, Fu, Tzung-May, Sulprizio, Melissa P., Zhuang, Jiawei, Jacob, Daniel J., Tian, Heng, Ma, Yaping, Zhang, Lijuan, Wang, Xiaolin, Chen, Qi, and Han, Zhiwei. WRF-GC (v2.0): online two-way coupling of WRF (v3.9.1.1) and GEOS-Chem (v12.7.2) for modeling regional atmospheric chemistry-meteorology interactions. Geoscientific Model Development, 2021, 14, (6), 3741-3768.Fischer, E. V., Jacob, D. J., Yantosca, R. M., Sulprizio, M. P., Millet, D. B., Mao, J., Paulot, F., Singh, H. B., Roiger, A., Ries, L., Talbot, R. W., Dzepina, K., and Deolal, S. Pandey. Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution. Atmospheric Chemistry and Physics, 2014, 14, (5), 2679-2698.Fisher, J. A., Jacob, D. J., Travis, K. R., Kim, P. S., Marais, E. A., Miller, C. C., Yu, K. R., Zhu, L., Yantosca, R. M., Sulprizio, M. P., Mao, J. Q., Wennberg, P. O., Crounse, J. D., Teng, A. P., Nguyen, T. B., St Clair, J. M., Cohen, R. C., Romer, P., Nault, B. A., Wooldridge, P. J., Jimenez, J. L., Campuzano-Jost, P., Day, D. A., Hu, W. W., Shepson, P. B., Xiong, F. L. Z., Blake, D. R., Goldstein, A. H., Misztal, P. K., Hanisco, T. F., Wolfe, G. M., Ryerson, T. B., Wisthaler, A., and Mikoviny, T. Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC4RS) and ground-based (SOAS) observations in the Southeast US. Atmospheric Chemistry and Physics, 2016, 16, (9), 5969-5991.Fisher, Jenny A., Atlas, Elliot L., Barletta, Barbara, Meinardi, Simone, Blake, Donald R., Thompson, Chelsea R., Ryerson, Thomas B., Peischl, Jeff, Tzompa-Sosa, Zitely A., and Murray, Lee T. Methyl, ethyl, and propyl nitrates: global distribution and impacts on reactive nitrogen in remote marine environments. Journal of Geophysical Research-Atmospheres, 2018, 123, (21), 12429-12451.Fleming, Lauren T., Lin, Peng, Roberts, James M., Selimovic, Vanessa, Yokelson, Robert, Laskin, Julia, Laskin, Alexander, and Nizkorodov, Sergey A. Molecular composition and photochemical lifetimes of brown carbon chromophores in biomass burning organic aerosol. Atmospheric Chemistry and Physics, 2020, 20, (2), 1105-1129.Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J. L., Frame, D., Lunt, D. J., Mauritsen, T., Palmer, M. D., Watanabe, M., Wild, M., and Zhang, H.: The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 923–1054, 2021.Fountoukis, C., and Nenes, A. ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-Nh(4)(+)-Na+-SO42--NO3--Cl--H2O aerosols. Atmospheric Chemistry and Physics, 2007, 7, (17), 4639-4659.Fraser, M. P., and Lakshmanan, K. Using levoglucosan as a molecular marker for the long-range transport of biomass combustion aerosols. Environmental Science & Technology, 2000, 34, (21), 4560-4564.Fry, J. L., Draper, D. C., Zarzana, K. J., Campuzano-Jost, P., Day, D. A., Jimenez, J. L., Brown, S. S., Cohen, R. C., Kaser, L., Hansel, A., Cappellin, L., Karl, T., Roux, A. Hodzic, Turnipseed, A., Cantrell, C., Lefer, B. L., and Grossberg, N. Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011. Atmospheric Chemistry and Physics, 2013, 13, (17), 8585-8605.Fu, P. Q., Kawamura, K., and Barrie, L. A. Photochemical and Other Sources of Organic Compounds in the Canadian High Arctic Aerosol Pollution during Winter-Spring. Environmental Science & Technology, 2009, 43, (2), 286-292.Fu, P. Q., Kawamura, K., and Miura, K. Molecular characterization of marine organic aerosols collected during a round-the-world cruise. Journal of Geophysical Research-Atmospheres, 2011, 116.Fu, P. Q., Kawamura, K., Chen, J., and Miyazaki, Y. Secondary production of organic aerosols from biogenic VOCs over Mt. Fuji, Japan. Environmental Science & Technology, 2014, 48, (15), 8491-8497.Fu, Tzung-May, Jacob, Daniel J., Wittrock, Folkard, Burrows, John P., Vrekoussis, Mihalis, and Henze, Daven K. Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. Journal of Geophysical Research-Atmospheres, 2008, 113, (D15).Fuchs, N. A., and Sutugin, A. G.: High-dispersed aerosols, in: Topics in current aerosol research, Elsevier, in International Reviews in Aerosol Physics and Chemistry, 1, 1971.Galloway, M. M., Powelson, M. H., Sedehi, N., Wood, S. E., Millage, K. D., Kononenko, J. A., Rynaski, A. D., and De Haan, D. O. Secondary organic aerosol formation during evaporation of droplets containing atmospheric aldehydes, amines, and ammonium sulfate. Environmental Science & Technology, 2014, 48, (24), 14417-14425.Gantt, B., Johnson, M. S., Meskhidze, N., Sciare, J., Ovadnevaite, J., Ceburnis, D., and O'Dowd, C. D. Model evaluation of marine primary organic aerosol emission schemes. Atmospheric Chemistry and Physics, 2012, 12, (18), 8553-8566.Gantt, B., Johnson, M. S., Crippa, M., Prevot, A. S. H., and Meskhidze, N. Implementing marine organic aerosols into the GEOS-Chem model. Geoscientific Model Development, 2015, 8, (3), 619-629.Garcia, M. I., van Drooge, B. L., Rodriguez, S., and Alastuey, A. Speciation of organic aerosols in the Saharan Air Layer and in the free troposphere westerlies. Atmospheric Chemistry and Physics, 2017, 17, (14), 8939-8958.Ge, X. L., Wexler, A. S., and Clegg, S. L. Atmospheric amines - part I. a review. Atmospheric Environment, 2011, 45, (3), 524-546.Ge, Y., Vieno, M., Stevenson, D. S., Wind, P., and Heal, M. R. A new assessment of global and regional budgets, fluxes, and lifetimes of atmospheric reactive N and S gases and aerosols. Atmospheric Chemistry and Physics, 2022, 22, (12), 8343-8368.Gensch, I., Sang-Arlt, X. F., Laumer, W., Chan, C. Y., Engling, G., Rudolph, J., and Kiendler-Scharr, A. Using delta C-13 of levoglucosan as a chemical clock. Environmental Science & Technology, 2018, 52, (19), 11094-11101.Giannoni, M., Martellini, T., Del Bubba, M., Gambaro, A., Zangrando, R., Chiari, M., Lepri, L., and Cincinelli, A. The use of levoglucosan for tracing biomass burning in PM2.5 samples in Tuscany (Italy). Environmental Pollution, 2012, 167, 7-15.Giri, B., Patel, K. S., Jaiswal, N. K., Sharma, S., Ambade, B., Wang, W. T., Simonich, S. L. M., and Simoneit, B. R. T. Composition and sources of organic tracers in aerosol particles of industrial central India. Atmospheric Research, 2013, 120, 312-324.Graham, B., Mayol-Bracero, O. L., Guyon, P., Roberts, G. C., Decesari, S., Facchini, M. C., Artaxo, P., Maenhaut, W., Koll, P., and Andreae, M. O. Water-soluble organic compounds in biomass burning aerosols over Amazonia - 1. Characterization by NMR and GC-MS. Journal of Geophysical Research-Atmospheres, 2002, 107, (D20).Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X. The model of rmissions of gases and aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 2012, 5, (6), 1471-1492.Hall, D., Wu, C. Y., Hsu, Y. M., Stormer, J., Engling, G., Capeto, K., Wang, J., Brown, S., Li, H. W., and Yu, K. M. PAHs, carbonyls, VOCs and PM2.5 emission factors for pre-harvest burning of Florida sugarcane. Atmospheric Environment, 2012, 55, 164-172.Ham, Y. S., and Tamiya, S. Contribution of dissolved organic nitrogen deposition to total dissolved nitrogen deposition under intensive agricultural activities. Water Air and Soil Pollution, 2007, 178, (1-4), 5-13.Harrison, Aaron W., Waterson, Amanda M., and De Bruyn, Warren J. Spectroscopic and Photochemical Properties of Secondary Brown Carbon from Aqueous Reactions of Methylglyoxal. Acs Earth and Space Chemistry, 2020, 4, (5), 762-773.Harrison, M. A. J., Barra, S., Borghesi, D., Vione, D., Arsene, C., and Olariu, R. L. Nitrated phenols in the atmosphere: a review. Atmospheric Environment, 2005, 39, (2), 231-248.He, Jun, Balasubramanian, Rajasekhar, Burger, David F., Hicks, Kevin, Kuylenstierna, Johan C. I., and Palani, Sundarambal. Dry and wet atmospheric deposition of nitrogen and phosphorus in Singapore. Atmospheric Environment, 2011, 45, (16), 2760-2768.He, Quan-Fu, Ding, Xiang, Wang, Xin-Ming, Yu, Jian-Zhen, Fu, Xiao-Xin, Liu, Teng-Yu, Zhang, Zhou, Xue, Jian, Chen, Duo-Hong, Zhong, Liu-Ju, and Donahue, Neil M. Organosulfates from Pinene and Isoprene over the Pearl River Delta, South China: Seasonal Variation and Implication in Formation Mechanisms. Environmental Science & Technology, 2014, 48, (16), 9236-9245.Heal, Mathew R., Kumar, Prashant, and Harrison, Roy M. Particles, air quality, policy and health. Chemical Society Reviews, 2012, 41, (19), 6606-6630.Heald, C. L., and Spracklen, D. V. Atmospheric budget of primary biological aerosol particles from fungal spores. Geophysical Research Letters, 2009, 36, 5.Heald, C. L., Ridley, D. A., Kroll, J. H., Barrett, S. R. H., Cady-Pereira, K. E., Alvarado, M. J., and Holmes, C. D. Contrasting the direct radiative effect and direct radiative forcing of aerosols. Atmospheric Chemistry and Physics, 2014, 14, (11), 5513-5527.Hedberg, E., and Johansson, C. Is levoglucosan a suitable quantitative tracer for wood burning? Comparison with receptor modeling on trace elements in Lycksele, Sweden. Journal of the Air & Waste Management Association, 2006, 56, (12), 1669-1678.Hems, R. F., Schnitzler, E. G., Liu-Kang, C., Cappa, C. D., and Abbatt, J. P. D. Aging of Atmospheric Brown Carbon Aerosol. Acs Earth and Space Chemistry, 2021, 5, (4), 722-748.Hems, Rachel F., and Abbatt, Jonathan P. D. Aqueous Phase Photo-oxidation of Brown Carbon Nitrophenols: Reaction Kinetics, Mechanism, and Evolution of Light Absorption. Acs Earth and Space Chemistry, 2018, 2, (3), 225-234.Hennigan, C. J., Sullivan, A. P., Collett, J. L., and Robinson, A. L. Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals. Geophysical Research Letters, 2010, 37.Henze, D. K., Hakami, A., and Seinfeld, J. H. Development of the adjoint of GEOS-Chem. Atmospheric Chemistry and Physics, 2007, 7, (9), 2413-2433.Ho, K. F., Engling, G., Ho, S. S. H., Huang, R. J., Lai, S. C., Cao, J. J., and Lee, S. C. Seasonal variations of anhydrosugars in PM2.5 in the Pearl River Delta Region, China. Tellus Series B-Chemical and Physical Meteorology, 2014, 66.Ho, K. F., Ho, S. S. H., Huang, R. J., Liu, S. X., Cao, J. J., Zhang, T., Chuang, H. C., Chan, C. S., Hu, D., and Tian, L. W. Characteristics of water-soluble organic nitrogen in fine particulate matter in the continental area of China. Atmospheric Environment, 2015, 106, 252-261.Ho, Steven Sai Hang, Li, Lijuan, Qu, Linli, Cao, Junji, Lui, Ka Hei, Niu, Xinyi, Lee, Shun-Cheng, and Ho, Kin Fai. Seasonal behavior of water-soluble organic nitrogen in fine particulate matter (PM2.5) at urban coastal environments in Hong Kong. Air Quality Atmosphere and Health, 2019, 12, (4), 389-399.Hodzic, Alma, Kasibhatla, Prasad S., Jo, Duseong S., Cappa, Christopher D., Jimenez, Jose L., Madronich, Sasha, and Park, Rokjin J. Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime. Atmospheric Chemistry and Physics, 2016, 16, (12), 7917-7941.Hodzic, Alma, Campuzano-Jost, Pedro, Bian, Huisheng, Chin, Mian, Colarco, Peter R., Day, Douglas A., Froyd, Karl D., Heinold, Bernd, Jo, Duseong S., Katich, Joseph M., Kodros, John K., Nault, Benjamin A., Pierce, Jeffrey R., Ray, Eric, Schacht, Jacob, Schill, Gregory P., Schroder, Jason C., Schwarz, Joshua P., Sueper, Donna T., Tegen, Ina, Tilmes, Simone, Tsigaridis, Kostas, Yu, Pengfei, and Jimenez, Jose L. Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models. Atmospheric Chemistry and Physics, 2020, 20, (8), 4607-4635.Hoesly, R. M., Smith, S. J., Feng, L. Y., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J., Li, M., Liu, L., Lu, Z. F., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q. Historical (1750-2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geoscientific Model Development, 2018, 11, (1), 369-408.Hoffman, E. J., Hoffman, G. L., and Duce, R. A. Particle size dependence of alkali and alkaline Earth metal enrichment in marine aerosols from Bermuda. Journal of Geophysical Research-Oceans, 1980, 85, (NC10), 5499-5502.Hoffmann, D., Tilgner, A., Iinuma, Y., and Herrmann, H. Atmospheric stability of levoglucosan: a detailed laboratory and modeling study. Environmental Science & Technology, 2010, 44, (2), 694-699.Hu, Lu, Keller, Christoph A., Long, Michael S., Sherwen, Tomas, Auer, Benjamin, Da Silva, Arlindo, Nielsen, Jon E., Pawson, Steven, Thompson, Matthew A., Trayanov, Atanas L., Travis, Katherine R., Grange, Stuart K., Evans, Mat J., and Jacob, Daniel J. Global simulation of tropospheric chemistry at 12.5 km resolution: performance and evaluation of the GEOS-Chem chemical module (v10-1) within the NASA GEOS Earth system model (GEOS-5 ESM). Geoscientific Model Development, 2018, 11, (11), 4603-4620.Hu, Q. H., Xie, Z. Q., Wang, X. M., Kang, H., and Zhang, P. F. Levoglucosan indicates high levels of biomass burning aerosols over oceans from the Arctic to Antarctic. Scientific Reports, 2013, 3.Huang, Ping, Zhang, Jiabao, Ma, Donghao, Wen, Zhaofei, Wu, Shengjun, Garland, Gina, Pereira, Engil Isadora Pujol, Zhu, Anning, Xin, Xiuli, and Zhang, Congzhi. Atmospheric deposition as an important nitrogen load to a typical agro-ecosystem in the Huang-Huai-Hai Plain. 2. Seasonal and inter-annual variations and their implications (2008-2012). Atmospheric Environment, 2016, 129, 1-8.Huang, Wei, Yang, Yuan, Wang, Yonghong, Gao, Wenkang, Li, Haiyan, Zhang, Yanyan, Li, Jiayun, Zhao, Shuman, Yan, Yingchao, Ji, Dongsheng, Tang, Guiqian, Liu, Zirui, Wang, Lili, Zhang, Renjian, and Wang, Yuesi. Exploring the inorganic and organic nitrate aerosol formation regimes at a suburban site on the North China Plain. Science of the Total Environment, 2021, 768.Hudman, R. C., Jacob, D. J., Turquety, S., Leibensperger, E. M., Murray, L. T., Wu, S., Gilliland, A. B., Avery, M., Bertram, T. H., Brune, W., Cohen, R. C., Dibb, J. E., Flocke, F. M., Fried, A., Holloway, J., Neuman, J. A., Orville, R., Perring, A., Ren, X., Sachse, G. W., Singh, H. B., Swanson, A., and Wooldridge, P. J. Surface and lightning sources of nitrogen oxides over the United States: Magnitudes, chemical evolution, and outflow. Journal of Geophysical Research-Atmospheres, 2007, 112, (D12).Hutchins, David A., and Capone, Douglas C. The marine nitrogen cycle: new developments and global change. Nature Reviews Microbiology, 2022, 401–414.Iinuma, Y., Bruggemann, E., Gnauk, T., Muller, K., Andreae, M. O., Helas, G., Parmar, R., and Herrmann, H. Source characterization of biomass burning particles: The combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat. Journal of Geophysical Research-Atmospheres, 2007, 112, (D8).Iinuma, Yoshiteru, Boege, Olaf, Graefe, Ricarda, and Herrmann, Hartmut. Methyl-Nitrocatechols: Atmospheric Tracer Compounds for Biomass Burning Secondary Organic Aerosols. Environmental Science & Technology, 2010, 44, (22), 8453-8459.Ipcc: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2021.Ito, A., Lin, G. X., and Penner, J. E. Reconciling modeled and observed atmospheric deposition of soluble organic nitrogen at coastal locations. Global Biogeochemical Cycles, 2014, 28, (6), 617-630.Ito, A., Lin, G. X., and Penner, J. E. Global modeling study of soluble organic nitrogen from open biomass burning. Atmospheric Environment, 2015, 121, 103-112.Ito, T., Nenes, A., Johnson, M. S., Meskhidze, N., and Deutsch, C. Acceleration of oxygen decline in the tropical Pacific over the past decades by aerosol pollutants. Nature Geoscience, 2016, 9, (6), 443-+.Izquieta-Rojano, S., Garcia-Gomez, H., Aguillaume, L., Santamaria, J. M., Tang, Y. S., Santamaria, C., Valino, F., Lasheras, E., Alonso, R., Avila, A., Cape, J. N., and Elustondo, D. Throughfall and bulk deposition of dissolved organic nitrogen to holm oak forests in the Iberian Peninsula: Flux estimation and identification of potential sources. Environmental Pollution, 2016, 210, 104-112.Jacob, D. J., Field, B. D., Li, Q. B., Blake, D. R., de Gouw, J., Warneke, C., Hansel, A., Wisthaler, A., Singh, H. B., and Guenther, A. Global budget of methanol: Constraints from atmospheric observations. Journal of Geophysical Research-Atmospheres, 2005, 110, (D8).Jacobson, M. C., Hansson, H. C., Noone, K. J., and Charlson, R. J. Organic atmospheric aerosols: Review and state of the science. Reviews of Geophysics, 2000, 38, (2), 267-294.Jacobson, M. Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 2001, 409, (6821), 695-697.Jacobson, M. Z. Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects. Journal of Geophysical Research-Atmospheres, 2014, 119, (14), 8980-9002.Jaeglé, L. , Quinn, P. K., Bates, T. S., Alexander, B., and Lin, J. T. Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations. Atmospheric Chemistry and Physics, 2011, 11, (7), 3137-3157.Jayarathne, T., Stockwell, C. E., Bhave, P. V., Praveen, P. S., Rathnayake, C. M., Islam, M. R., Panday, A. K., Adhikari, S., Maharjan, R., Goetz, J. D., DeCarlo, P. F., Saikawa, E., Yokelson, R. J., and Stone, E. A. Nepal ambient monitoring and source testing experiment (NAMaSTE): emissions of particulate matter from wood- and dung-fueled cooking fires, garbage and crop residue burning, brick kilns, and other sources. Atmospheric Chemistry and Physics, 2018, 18, (3), 2259-2286.Jiang, C. M., Yu, W. T., Ma, Q., Xu, Y. G., Zou, H., Zhang, S. C., and Sheng, W. P. Atmospheric organic nitrogen deposition: Analysis of nationwide data and a case study in Northeast China. Environmental Pollution, 2013, 182, 430-436.Jickells, T., Baker, A. R., Cape, J. N., Cornell, S. E., and Nemitz, E. The cycling of organic nitrogen through the atmosphere. Philosophical Transactions of the Royal Society B-Biological Sciences, 2013, 368, (1621).Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J., Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U., and Worsnop, D. R. Evolution of Organic Aerosols in the Atmosphere. Science, 2009, 326, (5959), 1525-1529.Jo, Duseong S., Park, Rokjin J., Lee, Seungun, Kim, Sang-Woo, and Zhang, Xiaolu. A global simulation of brown carbon: implications for photochemistry and direct radiative effect. Atmospheric Chemistry and Physics, 2016, 16, (5), 3413-3432.Kahnt, Ariane, Behrouzi, Shabnam, Vermeylen, Reinhilde, Shalamzari, Mohammad Safi, Vercauteren, Jordy, Roekens, Edward, Claeys, Magda, and Maenhaut, Willy. One-year study of nitro-organic compounds and their relation to wood burning in PM10 aerosol from a rural site in Belgium. Atmospheric Environment, 2013, 81, 561-568.Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J. Organic aerosol and global climate modelling: a review. Atmospheric Chemistry and Physics, 2005, 5, 1053-1123.Kanakidou, M., Duce, R. A., Prospero, J. M., Baker, A. R., Benitez-Nelson, C., Dentener, F. J., Hunter, K. A., Liss, P. S., Mahowald, N., Okin, G. S., Sarin, M., Tsigaridis, K., Uematsu, M., Zamora, L. M., and Zhu, T. Atmospheric fluxes of organic N and P to the global ocean. Global Biogeochemical Cycles, 2012, 26, 1-12.Kanakidou, M., Myriokefalitakis, S., Daskalakis, N., Fanourgakis, G., Nenes, A., Baker, A. R., Tsigaridis, K., and Mihalopoulos, N. Past, present, and future atmospheric nitrogen deposition. Journal of the Atmospheric Sciences, 2016, 73, (5), 2039-2047.Kanakidou, M., Myriokefalitakis, S., and Tsigaridis, K. Aerosols in atmospheric chemistry and biogeochemical cycles of nutrients. Environmental Research Letters, 2018, 13, (6).Karavoltsos, S., Sakellari, A., Bakeas, E., Bekiaris, G., Plavsic, M., Proestos, C., Zinelis, S., Koukoulakis, K., Diakos, I., Dassenakis, M., and Kalogeropoulos, N. Trace elements, polycyclic aromatic hydrocarbons, mineral composition, and FT-IR characterization of unrefined sea and rock salts: environmental interactions. Environmental Science and Pollution Research, 2020, 27, (10), 10857-10868.Karthikeyan, Sathrugnan, He, Jun, Palani, Sundarambal, Balasubramanian, Rajasekhar, and Burger, David. Determination of total nitrogen in atmospheric wet and dry deposition samples. Talanta, 2009, 77, (3), 979-984.Kasthuriarachchi, Nethmi Y., Rivellini, Laura-Helena, Chen, Xi, Li, Yong Jie, and Lee, Alex K. Y. Effect of relative humidity on secondary brown carbon formation in aqueous droplets. Environmental Science & Technology, 2020, 54, (20), 13207-13216.Kessler, S. H., Smith, J. D., Che, D. L., Worsnop, D. R., Wilson, K. R., and Kroll, J. H. Chemical sinks of organic aerosol: kinetics and products of the heterogeneous oxidation of erythritol and levoglucosan. Environmental Science & Technology, 2010, 44, (18), 7005-7010.Kiendler-Scharr, A., Mensah, A. A., Friese, E., Topping, D., Nemitz, E., Prevot, A. S. H., Aijala, M., Allan, J., Canonaco, F., Canagaratna, M., Carbone, S., Crippa, M., Dall Osto, M., Day, D. A., De Carlo, P., Di Marco, C. F., Elbern, H., Eriksson, A., Freney, E., Hao, L., Herrmann, H., Hildebrandt, L., Hillamo, R., Jimenez, J. L., Laaksonen, A., McFiggans, G., Mohr, C., O'Dowd, C., Otjes, R., Ovadnevaite, J., Pandis, S. N., Poulain, L., Schlag, P., Sellegri, K., Swietlicki, E., Tiitta, P., Vermeulen, A., Wahner, A., Worsnop, D., and Wu, H. C. Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol. Geophysical Research Letters, 2016, 43, (14), 7735-7744.Kitanovski, Zoran, Grgic, Irena, Vermeylen, Reinhilde, Claeys, Magda, and Maenhaut, Willy. Liquid chromatography tandem mass spectrometry method for characterization of monoaromatic nitro-compounds in atmospheric particulate matter. Journal of Chromatography A, 2012, 1268, 35-43.Kleinman, L. I., Springston, S. R., Daum, P. H., Lee, Y. N., Nunnermacker, L. J., Senum, G. I., Wang, J., Weinstein-Lloyd, J., Alexander, M. L., Hubbe, J., Ortega, J., Canagaratna, M. R., and Jayne, J. The time evolution of aerosol composition over the Mexico City plateau. Atmospheric Chemistry and Physics, 2008, 8, (6), 1559-1575.Knopf, D. A., Forrester, S. M., and Slade, J. H. Heterogeneous oxidation kinetics of organic biomass burning aerosol surrogates by O-3, NO2, N2O5, and NO3. Physical Chemistry Chemical Physics, 2011, 13, (47), 21050-21062.Kovacic, P., and Somanathan, R. Nitroaromatic compounds: Environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism. Journal of Applied Toxicology, 2014, 34, (8), 810-824.Kua, J., Krizner, H. E., and De Haan, D. O. Thermodynamics and kinetics of imidazole formation from glyoxal, methylamine, and formaldehyde: A computational study. Journal of Physical Chemistry A, 2011, 115, (9), 1667-1675.Kuang, Fuhong, Liu, Xuejun, Zhu, Bo, Shen, Jianlin, Pan, Yuepeng, Su, Minmin, and Goulding, Keith. Wet and dry nitrogen deposition in the central Sichuan Basin of China. Atmospheric Environment, 2016, 143, 39-50.Kunwar, B., and Kawamura, K. One-year observations of carbonaceous and nitrogenous components and major ions in the aerosols from subtropical Okinawa Island, an outflow region of Asian dusts. Atmospheric Chemistry and Physics, 2014, 14, (4), 1819-1836.Lai, C. Y., Liu, Y. C., Ma, J. Z., Ma, Q. X., and He, H. Degradation kinetics of levoglucosan initiated by hydroxyl radical under different environmental conditions. Atmospheric Environment, 2014, 91, 32-39.Landis, M. S., Edgerton, E. S., White, E. M., Wentworth, G. R., Sullivan, A. P., and Dillner, A. M. The impact of the 2016 Fort McMurray Horse River Wildfire on ambient air pollution levels in the Athabasca Oil Sands Region, Alberta, Canada. Science of the Total Environment, 2018, 618, 1665-1676.Larsen, R. K., Schantz, M. M., and Wise, S. A. Determination of levoglucosan in particulate matter reference materials. Aerosol Science and Technology, 2006, 40, (10), 781-787.Laskin, Alexander, Laskin, Julia, and Nizkorodov, Sergey A. Chemistry of Atmospheric Brown Carbon. Chemical Reviews, 2015, 115, (10), 4335-4382.Laskin, Alexander, Lin, Peng, Laskin, Julia, Fleming, Lauren T., and Nizkorodov, Sergey. Molecular Characterization of Atmospheric Brown Carbon. Multiphase Environmental Chemistry in the Atmosphere, 2018, 1299, 261-274.Latimer, Robyn N. C., and Martin, Randall V. Interpretation of measured aerosol mass scattering efficiency over North America using a chemical transport model. Atmospheric Chemistry and Physics, 2019, 19, (4), 2635-2653.Lee, Hyun Ji, Aiona, Paige Kuuipo, Laskin, Alexander, Laskin, Julia, and Nizkorodov, Sergey A. Effect of solar radiation on the optical properties and molecular composition of laboratory proxies of atmospheric brown carbon. Environmental Science & Technology, 2014, 48, (17), 10217-10226.Leithead, A., Li, S. M., Hoff, R., Cheng, Y., and Brook, J. Levoglucosan and dehydroabietic acid: Evidence of biomass burning impact on aerosols in the Lower Fraser Valley. Atmospheric Environment, 2006, 40, (15), 2721-2734.Lelieveld, Jos, and Poeschl, Ulrich. Chemists can help to solve the air-pollution health crisis. Nature, 2017, 551, (7680), 291-293.Lesworth, Timothy, Baker, Alex R., and Jickells, Timothy. Aerosol organic nitrogen over the remote Atlantic Ocean. Atmospheric Environment, 2010, 44, (15), 1887-1893.Levin, Z., Teller, A., Ganor, E., Graham, B., Andreae, M. O., Maenhaut, W., Falkovich, A. H., and Rudich, Y. Role of aerosol size and composition in nucleation scavenging within clouds in a shallow cold front. Journal of Geophysical Research-Atmospheres, 2003, 108, (D22).Lewis, K. M., van Dijken, G. L., and Arrigo, K. R. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science, 2020, 369, (6500), 198.Li, Guancheng, Cheng, Lijing, Zhu, Jiang, Trenberth, Kevin E., Mann, Michael E., and Abraham, John P. Increasing ocean stratification over the past half-century. Nature Climate Change, 2020a, 10, (12), 1116-1123.Li, J. J., Wang, G. H., Aggarwal, S. G., Huang, Y., Ren, Y. Q., Zhou, B. H., Singh, K., Gupta, P. K., Cao, J. J., and Zhang, R. Comparison of abundances, compositions and sources of elements, inorganic ions and organic compounds in atmospheric aerosols from Xi'an and New Delhi, two megacities in China and India. Science of the Total Environment, 2014, 476, 485-495.Li, J. N., Forrester, S. M., and Knopf, D. A. Heterogeneous oxidation of amorphous organic aerosol surrogates by O-3, NO3, and OH at typical tropospheric temperatures. Atmospheric Chemistry and Physics, 2020b, 20, (10), 6055-6080.Li, Jing, Carlson, Barbara E., Yung, Yuk L., Lv, Daren, Hansen, James, Penner, Joyce E., Liao, Hong, Ramaswamy, V., Kahn, Ralph A., Zhang, Peng, Dubovik, Oleg, Ding, Aijun, Lacis, Andrew A., Zhang, Lu, and Dong, Yueming. Scattering and absorbing aerosols in the climate system. Nature Reviews Earth & Environment, 2022, 3, (6), 363-379.Li, Jiong, Fang, Yunting, Yoh, Muneoki, Wang, Xuemei, Wu, Zhiyong, Kuang, Yuanwen, and Wen, Dazhi. Organic nitrogen deposition in precipitation in metropolitan Guangzhou city of southern China. Atmospheric Research, 2012, 113, 57-67.Li, K. Q., Ma, Y. P., Dai, A. Q., and Wang, X. L. Degradation dynamics and bioavailability of land-based dissolved organic nitrogen in the Bohai Sea: Linking experiment with modeling. Marine Pollution Bulletin, 2017a, 124, (2), 856-870.Li, M., Zhang, Q., Kurokawa, J., Woo, J. H., He, K. B., Lu, Z. F., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y. F., Hong, C. P., Huo, H., Jiang, X. J., Kang, S. C., Liu, F., Su, H., and Zheng, B. MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmospheric Chemistry and Physics, 2017b, 17, (2), 935-963.Li, M., Li, K. Q., Chen, K., Liu, C. C., Ma, Y. P., and Wang, X. L. Size-based bioavailability of land-based DON and its impact on eutrophication of Jiaozhou bay. Marine Pollution Bulletin, 2020c, 152.Li, Meiju, Fan, Xingjun, Zhu, Mengbo, Zou, Chunlin, Song, Jianzhong, Wei, Siye, Jia, Wanglu, and Peng, Ping'an. Abundance and Light Absorption Properties of Brown Carbon Emitted from Residential Coal Combustion in China. Environmental Science & Technology, 2019a, 53, (2), 595-603.Li, Q. F., and Yu, J. Z. Determination of total aerosol nitrogen by thermal evolution. Aerosol Science and Technology, 2004, 38, (4), 382-390.Li, R., Cui, L. L., Zhao, Y. L., Fu, H. B., Li, Q., Zhang, L. W., and Chen, J. M. Size-segregated water-soluble N-bearing species in the land-sea boundary zone of East China. Atmospheric Environment, 2019b, 218, 12.Li, Rui, Wang, Xinfeng, Gu, Rongrong, Lu, Chunying, Zhu, Fanping, Xue, Likun, Xie, Huijun, Du, Lin, Chen, Jianmin, and Wang, Wenxing. Identification and semi-quantification of biogenic organic nitrates in ambient particulate matters by UHPLC/ESI-MS. Atmospheric Environment, 2018, 176, 140-147.Li, S. M., and Winchester, J. W. Particle size distribution and chemistry of late winter Arctic aerosols. Journal of Geophysical Research-Atmospheres, 1990, 95, (D9), 13897-13908.Li, X., Chen, M. X., Le, H. P., Wang, F. W., Guo, Z. G., Iinuma, Y., Chen, J. M., and Herrmann, H. Atmospheric outflow of PM2.5 saccharides from megacity Shanghai to East China Sea: Impact of biological and biomass burning sources. Atmospheric Environment, 2016a, 143, 1-14.Li, X. R., Wen, T. X., Xin, J. Y., Liu, Z. R., Liu, S. Q., Li, D., Zhang, R. Y., Wang, Y. F., and Wang, Y. S. Spatial and seasonal variations of sugars (alcohol) in China: Emerging results from the CARE-China network. Atmospheric Environment, 2019c, 209, 136-143.Li, Yi, Schichtel, Bret A., Walker, John T., Schwede, Donna B., Chen, Xi, Lehmann, Christopher M. B., Puchalski, Melissa A., Gay, David A., and Collett, Jeffrey L., Jr. Increasing importance of deposition of reduced nitrogen in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2016b, 113, (21), 5874-5879.Li, Yumin, Fu, Tzung-May, Yu, Jian Zhen, Feng, Xu, Zhang, Lijuan, Chen, Jing, Boreddy, Suresh Kumar Reddy, Kawamura, Kimitaka, Fu, Pingqing, Yang, Xin, Zhu, Lei, and Zeng, Zhenzhong. Impacts of Chemical Degradation on the Global Budget of Atmospheric Levoglucosan and Its Use As a Biomass Burning Tracer. Environmental Science & Technology, 2021, 55, (8), 5525-5536.Liang, L. L., Engling, G., Cheng, Y., Liu, X. Y., Du, Z. Y., Ma, Q. L., Zhang, X. Y., Sun, J. Y., Xu, W. Y., Liu, C., Zhang, G., and Xu, H. Biomass burning impacts on ambient aerosol at a background site in East China: Insights from a yearlong study. Atmospheric Research, 2020, 231.Lin, C. S., Huang, R. J., Duan, J., Zhong, H. B., and Xu, W. Primary and Secondary Organic Nitrate in Northwest China: A Case Study. Environmental Science & Technology Letters, 2021a, 8, (11), 947-953.Lin, Haipeng, Jacob, Daniel J., Lundgren, Elizabeth W., Sulprizio, Melissa P., Keller, Christoph A., Fritz, Thibaud M., Eastham, Sebastian D., Emmons, Louisa K., Campbell, Patrick C., Baker, Barry, Saylor, Rick D., and Montuoro, Raffaele. Harmonized Emissions Component (HEMCO) 3.0 as a versatile emissions component for atmospheric models: application in the GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-Aerosol, and NOAA UFS models. Geoscientific Model Development, 2021b, 14, (9), 5487-5506.Lin, M., Walker, J., Geron, C., and Khlystov, A. Organic nitrogen in PM2.5 aerosol at a forest site in the Southeast US. Atmospheric Chemistry and Physics, 2010, 10, (5), 2145-2157.Lin, P., Liu, J. M., Shilling, J. E., Kathmann, S. M., Laskin, J., and Laskin, A. Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene. Physical Chemistry Chemical Physics, 2015, 17, (36), 23312-23325.Lin, Peng, Aiona, Paige K., Li, Ying, Shiraiwa, Manabu, Laskin, Julia, Nizkorodov, Sergey A., and Laskin, Alexander. Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles. Environmental Science & Technology, 2016, 50, (21), 11815-11824.Lin, Peng, Bluvshtein, Nir, Rudich, Yinon, Nizkorodov, Sergey A., Laskin, Julia, and Laskin, Alexander. Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event. Environmental Science & Technology, 2017, 51, (20), 11561-11570.Lin, Peng, Fleming, Lauren T., Nizkorodov, Sergey A., Laskin, Julia, and Laskin, Alexander. Comprehensive Molecular Characterization of Atmospheric Brown Carbon by High Resolution Mass Spectrometry with Electrospray and Atmospheric Pressure Photoionization. Analytical Chemistry, 2018, 90, (21), 12493-12502.Lin, S. J., and Rood, R. B. Multidimensional flux-form semi-Lagrangian transport schemes. Monthly Weather Review, 1996, 124, (9), 2046-2070.Liu, F. X., Bi, X. H., Zhang, G. H., Peng, L., Lian, X. F., Lu, H. Y., Fu, Y. Z., Wang, X. M., Peng, P. A., and Sheng, G. Y. Concentration, size distribution and dry deposition of amines in atmospheric particles of urban Guangzhou, China. Atmospheric Environment, 2017, 171, 279-288.Liu, F. X., Bi, X. H., Zhang, G. H., Lian, X. F., Fu, Y. Z., Yang, Y. X., Lin, Q. H., Jiang, F., Wang, X. M., Peng, P. A., and Sheng, G. Y. Gas-to-particle partitioning of atmospheric amines observed at a mountain site in southern China. Atmospheric Environment, 2018, 195, 1-11.Liu, H. Y., Jacob, D. J., Bey, I., and Yantosca, R. M. Constraints from Pb-210 and Be-7 on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields. Journal of Geophysical Research-Atmospheres, 2001, 106, (D11), 12109-12128.Liu, J., Bergin, M., Guo, H., King, L., Kotra, N., Edgerton, E., and Weber, R. J. Size-resolved measurements of brown carbon in water and methanol extracts and estimates of their contribution to ambient fine-particle light absorption. Atmospheric Chemistry and Physics, 2013, 13, (24), 12389-12404.Liu, Jiumeng, Lin, Peng, Laskin, Alexander, Laskin, Julia, Kathmann, Shawn M., Wise, Matthew, Caylor, Ryan, Imholt, Felisha, Selimovic, Vanessa, and Shilling, John E. Optical properties and aging of light-absorbing secondary organic aerosol. Atmospheric Chemistry and Physics, 2016, 16, (19), 12815-12827.Liu, Qingyang, Liu, Yanjiu, Zhao, Qiang, Zhang, Tingting, and Schauer, James J. Increases in the formation of water soluble organic nitrogen during Asian dust storm episodes. Atmospheric Research, 2021, 253.Liu, X. Y., Zhang, Y. L., Peng, Y. R., Xu, L. L., Zhu, C. M., Cao, F., Zhai, X. Y., Haque, M. M., Yang, C., Chang, Y. H., Huang, T., Xu, Z. F., Bao, M. Y., Zhang, W. Q., Fan, M. Y., and Lee, X. H. Chemical and optical properties of carbonaceous aerosols in Nanjing, eastern China: regionally transported biomass burning contribution. Atmospheric Chemistry and Physics, 2019, 19, (17), 11213-11233.Long, M. S., Yantosca, R., Nielsen, J. E., Keller, C. A., da Silva, A., Sulprizio, M. P., Pawson, S., and Jacob, D. J. Development of a grid-independent GEOS-Chem chemical transport model (v9-02) as an atmospheric chemistry module for Earth system models. Geoscientific Model Development, 2015, 8, (3), 595-602.Lu, Xiao, Zhang, Lin, Wu, Tongwen, Long, Michael S., Wang, Jun, Jacob, Daniel J., Zhang, Fang, Zhang, Jie, Eastham, Sebastian D., Hu, Lu, Zhu, Lei, Liu, Xiong, and Wei, Min. Development of the global atmospheric chemistry general circulation model BCC-GEOS-Chem v1.0: model description and evaluation. Geoscientific Model Development, 2020, 13, (9), 3817-3838.Luo, L., Yao, X. H., Gao, H. W., Hsu, S. C., Li, J. W., and Kao, S. J. Nitrogen speciation in various types of aerosols in spring over the northwestern Pacific Ocean. Atmospheric Chemistry and Physics, 2016, 16, (1), 325-341.Mace, K. A., Artaxo, P., and Duce, R. A. Water-soluble organic nitrogen in Amazon Basin aerosols during the dry (biomass burning) and wet seasons. Journal of Geophysical Research-Atmospheres, 2003a, 108, (D16).Mace, K. A., Duce, R. A., and Tindale, N. W. Organic nitrogen in rain and aerosol at Cape Grim, Tasmania, Australia. Journal of Geophysical Research-Atmospheres, 2003b, 108, (D11).Mahowald, Natalie, Ward, Daniel S., Kloster, Silvia, Flanner, Mark G., Heald, Colette L., Heavens, Nicholas G., Hess, Peter G., Lamarque, Jean-Francois, and Chuang, Patrick Y. Aerosol Impacts on Climate and Biogeochemistry. Annual Review of Environment and Resources, Vol 36, 2011, 36, 45-74.Mahowald, Natalie M., Scanza, Rachel, Brahney, Janice, Goodale, Christine L., Hess, Peter G., Moore, J. Keith, and Neff, Jason. Aerosol Deposition Impacts on Land and Ocean Carbon Cycles. Current Climate Change Reports, 2017, 3, (1), 16-31.Mao, J. Q., Paulot, F., Jacob, D. J., Cohen, R. C., Crounse, J. D., Wennberg, P. O., Keller, C. A., Hudman, R. C., Barkley, M. P., and Horowitz, L. W. Ozone and organic nitrates over the eastern United States: Sensitivity to isoprene chemistry. Journal of Geophysical Research-Atmospheres, 2013, 118, (19), 11256-11268.Marais, E. A., and Wiedinmyer, C. Air quality impact of diffuse and inefficient combustion emissions in Africa (DICE-Africa). Environmental Science & Technology, 2016, 50, (19), 10739-10745.Marais, Eloise A., Jacob, Daniel J., Turner, Jay R., and Mickley, Loretta J. Evidence of 1991-2013 decrease of biogenic secondary organic aerosol in response to SO2 emission controls. Environmental Research Letters, 2017, 12, (5).Matsumoto, K., Nagao, I., Tanaka, H., Miyaji, H., Iida, T., and Ikebe, Y. Seasonal characteristics of organic and inorganic species and their size distributions in atmospheric aerosols over the northwest Pacific Ocean. Atmospheric Environment, 1998, 32, (11), 1931-1946.Matsumoto, K., Yamamoto, Y., Kobayashi, H., Kaneyasu, N., and Nakano, T. Water-soluble organic nitrogen in the ambient aerosols and its contribution to the dry deposition of fixed nitrogen species in Japan. Atmospheric Environment, 2014, 95, 334-343.Matsumoto, K., and Yamato, K. Uncertainties in the measurements of water-soluble organic nitrogen in the aerosol. Atmospheric Environment, 2016, 144, 220-225.Matsumoto, K., Takusagawa, F., Suzuki, H., and Horiuchi, K. Water-soluble organic nitrogen in the aerosols and rainwater at an urban site in Japan: Implications for the nitrogen composition in the atmospheric deposition. Atmospheric Environment, 2018, 191, 267-272.Matsumoto, K., Watanabe, Y., Horiuchi, K., and Nakano, T. Simultaneous measurement of the water-soluble organic nitrogen in the gas phase and aerosols at a forested site in Japan. Atmospheric Environment, 2019a, 200, 312-318.Matsumoto, Kiyoshi, Yamamoto, Yuya, Nishizawa, Kotaro, Kaneyasu, Naoki, Irino, Tomohisa, and Yoshikawa-Inoue, Hisayuki. Origin of the water-soluble organic nitrogen in the maritime aerosol. Atmospheric Environment, 2017, 167, 97-103.Matsumoto, Kiyoshi, Sakata, Keisuke, and Watanabe, Yuuya. Water-soluble and water-insoluble organic nitrogen in the dry and wet deposition. Atmospheric Environment, 2019b, 218.Matsumoto, Kiyoshi, Ogawa, Takuya, Ishikawa, Manami, Hirai, Aki, Watanabe, Yuuya, and Nakano, Takashi. Organic and inorganic nitrogen deposition on the red pine forests at the northern foot of Mt. Fuji, Japan. Atmospheric Environment, 2020, 237.McDuffie, E. E., Smith, S. J., O'Rourke, P., Tibrewal, K., Venkataraman, C., Marais, E. A., Zheng, B., Crippa, M., Brauer, M., and Martin, R. V. A global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel-specific sources (1970-2017): an application of the Community Emissions Data System (CEDS). Earth System Science Data, 2020, 12, (4), 3413-3442.Miyazaki, Y., Kawamura, K., Jung, J., Furutani, H., and Uematsu, M. Latitudinal distributions of organic nitrogen and organic carbon in marine aerosols over the western North Pacific. Atmospheric Chemistry and Physics, 2011, 11, (7), 3037-3049.Miyazaki, Y., Fu, P. Q., Ono, K., Tachibana, E., and Kawamura, K. Seasonal cycles of water-soluble organic nitrogen aerosols in a deciduous broadleaf forest in northern Japan. Journal of Geophysical Research-Atmospheres, 2014, 119, (3), 1440-1454.Miyazaki, Yuzo, Kawamura, Kimitaka, and Sawano, Maki. Size distributions of organic nitrogen and carbon in remote marine aerosols: Evidence of marine biological origin based on their isotopic ratios. Geophysical Research Letters, 2010, 37.Mkoma, S. L., Kawamura, K., and Fu, P. Q. Contributions of biomass/biofuel burning to organic aerosols and particulate matter in Tanzania, East Africa, based on analyses of ionic species, organic and elemental carbon, levoglucosan and mannosan. Atmospheric Chemistry and Physics, 2013, 13, (20), 10325-10338.Mochida, M., Kawamura, K., Fu, P. Q., and Takemura, T. Seasonal variation of levoglucosan in aerosols over the western North Pacific and its assessment as a biomass-burning tracer. Atmospheric Environment, 2010, 44, (29), 3511-3518.Mohr, Claudia, Lopez-Hilfiker, Felipe D., Zotter, Peter, Prevot, Andre S. H., Xu, Lu, Ng, Nga L., Herndon, Scott C., Williams, Leah R., Franklin, Jonathan P., Zahniser, Mark S., Worsnop, Douglas R., Knighton, W. Berk, Aiken, Allison C., Gorkowski, Kyle J., Dubey, Manvendra K., Allan, James D., and Thornton, Joel A. Contribution of Nitrated Phenols to Wood Burning Brown Carbon Light Absorption in Detling, United Kingdom during Winter Time. Environmental Science & Technology, 2013, 47, (12), 6316-6324.Montero-Martinez, Guillermo, Rinaldi, Matteo, Gilardoni, Stefania, Giulianelli, Lara, Paglione, Marco, Decesari, Stefano, Fuzzi, Sandro, and Facchini, Maria Cristina. On the water-soluble organic nitrogen concentration and mass size distribution during the fog season in the Po Valley, Italy. Science of the Total Environment, 2014, 485, 103-109.Morales, J. A., Albornoz, A., Socorro, E., and Morillo, A. An estimation of the nitrogen and phosphorus loading by wet deposition over Lake Maracaibo, Venezuela. Water Air and Soil Pollution, 2001, 128, (3-4), 207-221.Munchak, L. A., Schichtel, B. A., Sullivan, A. P., Holden, A. S., Kreidenweis, S. M., Malm, W. C., and Collett, J. L. Development of wildland fire particulate smoke marker to organic carbon emission ratios for the conterminous United States. Atmospheric Environment, 2011, 45, (2), 395-403.Murray, C. J. L., Aravkin, A. Y., Zheng, P., Abbafati, C., Abbas, K. M., Abbasi-Kangevari, M., Abd-Allah, F., Abdelalim, A., Abdollahi, M., Abdollahpour, I., Abegaz, K. H., Abolhassani, H., Aboyans, V., Abreu, L. G., Abrigo, M. R. M., Abualhasan, A., Abu-Raddad, L. J., Abushouk, A. I., Adabi, M., Adekanmbi, V., Adeoye, A. M., Adetokunboh, O. O., Adham, D., Advani, S. M., Agarwal, G., Aghamir, S. M. K., Agrawal, A., Ahmad, T., Ahmadi, K., Ahmadi, M., Ahmadieh, H., Ahmed, M. B., Akalu, T. Y., Akinyemi, R. O., Akinyemiju, T., Akombi, B., Akunna, C. J., Alahdab, F., Al-Aly, Z., Alam, K., Alam, S., Alam, T., Alanezi, F. M., Alanzi, T. M., Alemu, B. W., Alhabib, K. F., Ali, M., Ali, S., Alicandro, G., Alinia, C., Alipour, V., Alizade, H., Aljunid, S. M., Alla, F., Allebeck, P., Almasi-Hashiani, A., Al-Mekhlafi, H. M., Alonso, J., Altirkawi, K. A., Amini-Rarani, M., Amiri, F., Amugsi, D. A., Ancuceanu, R., Anderlini, D., Anderson, J. A., Andrei, C. L., Andrei, T., Angus, C., Anjomshoa, M., Ansari, F., Ansari-Moghaddam, A., Antonazzo, I. C., Antonio, C. A. T., Antony, C. M., Antriyandarti, E., Anvari, D., Anwer, R., Appiah, S. C. Y., Arabloo, J., Arab-Zozani, M., Ariani, F., Armoon, B., Arnlov, J., Arzani, A., Asadi-Aliabadi, M., Asadi-Pooya, A. A., Ashbaugh, C., Assmus, M., Atafar, Z., Atnafu, D. D., Atout, M. M. W., Ausloos, F., Ausloos, M., Quintanilla, B. P. A., Ayano, G., Ayanore, M. A., Azari, S., Azarian, G., Azene, Z. N., Badawi, A., Badiye, A. D., Bahrami, M. A., Bakhshaei, M. H., Bakhtiari, A., Bakkannavar, S. M., Baldasseroni, A., Ball, K., Ballew, S. H., Balzi, D., Banach, M., Banerjee, S. K., Bante, A. B., Baraki, A. G., Barker-Collo, S. L., Barnighausen, T. W., Barrero, L. H., Barthelemy, C. M., Barua, L., Basu, S., Baune, B. T., Bayati, M., Becker, J. S., Bedi, N., Beghi, E., Bejot, Y., Bell, M. L., Bennitt, F. B., Bensenor, I. M., Berhe, K., Berman, A. E., Bhagavathula, A. S., Bhageerathy, R., Bhala, N., Bhandari, D., Bhattacharyya, K., Bhutta, Z. A., Bijani, A., Bikbov, B., Bin Sayeed, M. S., Biondi, A., Birihane, B. M., Bisignano, C., Biswas, R. K., Bitew, H., Bohlouli, S., Bohluli, M., Boon-Dooley, A. S., Borges, G., Borzi, A. M., Borzouei, S., Bosetti, C., Boufous, S., Braithwaite, D., Breitborde, N. J. K., Breitner, S., Brenner, H., Briant, P. S., Briko, A. N., Briko, N. I., Britton, G. B., Bryazka, D., Bumgarner, B. R., Burkart, K., Burnett, R. T., Nagaraja, S. B., Butt, Z. A., dos Santos, F. L. C., Cahill, L. E., Camera, L. A., Campos-Nonato, I. R., Cardenas, R., Carreras, G., Carrero, J. J., Carvalho, F., Castaldelli-Maia, J. M., Castaneda-Orjuela, C. A., Castelpietra, G., Castro, F., Causey, K., Cederroth, C. R., Cercy, K. M., Cerin, E., Chandan, J. S., Chang, K. L., Charlson, F. J., Chattu, V. K., Chaturvedi, S., Cherbuin, N., Chimed-Ochir, O., Cho, D. Y., Choi, J. Y. J., Christensen, H., Chu, D. T., Chung, M. T., Chung, S. C., Cicuttini, F. M., Ciobanu, L. G., Cirillo, M., Classen, T. K. D., Cohen, A. J., Compton, K., Cooper, O. R., Costa, V. M., Cousin, E., Cowden, R. G., Cross, D. H., Cruz, J. A., Dahlawi, S. M. A., Damasceno, A. A. M., Damiani, G., Dandona, L., Dandona, R., Dangel, W. J., Danielsson, A. K., Dargan, P. I., Darwesh, A. M., Daryani, A., Das, J. K., Das Gupta, R., Das Neves, J., Davila-Cervantes, C. A., Davitoiu, D. V., De Leo, D., Degenhardt, L., DeLang, M., Dellavalle, R. P., Demeke, F. M., Demoz, G. T., Demsie, D. G., Denova-Gutierrez, E., Dervenis, N., Dhungana, G. P., Dianatinasab, M., da Silva, D. D., Diaz, D., Forooshani, Z. S. D., Djalalinia, S., Do, H. T., Dokova, K., Dorostkar, F., Doshmangir, L., Driscoll, T. R., Duncan, B. B., Duraes, A. R., Eagan, A. W., Edvardsson, D., El Nahas, N., El Sayed, I., El Tantawi, M., Elbarazi, I., Elgendy, I. Y., El-Jaafary, S. I., Elyazar, I. R. F., Emmons-Bell, S., Erskine, H. E., Eskandarieh, S., Esmaeilnejad, S., Esteghamati, A., Estep, K., Etemadi, A., Etisso, A. E., Fanzo, J., Farahmand, M., Fareed, M., Faridnia, R., Farioli, A., Faro, A., Faruque, M., Farzadfar, F., Fattahi, N., Fazlzadeh, M., Feigin, V. L., Feldman, R., Fereshtehnejad, S. M., Fernandes, E., Ferrara, G., Ferrari, A. J., Ferreira, M. L., Filip, I., Fischer, F., Fisher, J. L., Flor, L. S., Foigt, N. A., Folayan, M. O., Fomenkov, A. A., Force, L. M., Foroutan, M., Franklin, R. C., Freitas, M., Fu, W. J., Fukumoto, T., Furtado, J. M., Gad, M. M., Gakidou, E., Gallus, S., Garcia-Basteiro, A. L., Gardner, W. M., Geberemariyam, B. S., Gebreslassie, Aaaa, Geremew, A., Hayoon, A. G., Gething, P. W., Ghadimi, M., Ghadiri, K., Ghaffarifar, F., Ghafourifard, M., Ghamari, F., Ghashghaee, A., Ghiasvand, H., Ghith, N., Gholamian, A., Ghosh, R., Gill, P. S., Ginindza, T. G., Giussani, G., Gnedovskaya, E. V., Goharinezhad, S., Gopalani, S. V., Gorini, G., Goudarzi, H., Goulart, A. C., Greaves, F., Grivna, M., Grosso, G., Gubari, M. I. M., Gugnani, H. C., Guimaraes, R. A., Guled, R. A., Guo, G. R., Guo, Y. M., Gupta, R., Gupta, T., Haddock, B., Hafezi-Nejad, N., Hafiz, A., Haj-Mirzaian, A., Hall, B. J., Halvaei, I., Hamadeh, R. R., Hamidi, S., Hammer, M. S., Hankey, G. J., Haririan, H., Haro, J. M., Hasaballah, A. I., Hasan, M. M., Hasanpoor, E., Hashi, A., Hassanipour, S., Hassankhani, H., Havmoeller, R. J., Hay, S. I., Hayat, K., Heidari, G., Heidari-Soureshjani, R., Henrikson, H. J., Herbert, M. E., Herteliu, C., Heydarpour, F., Hird, T. R., Hoek, H. W., Holla, R., Hoogar, P., Hosgood, H. D., Hossain, N., Hosseini, M., Hosseinzadeh, M., Hostiuc, M., Hostiuc, S., Househ, M., Hsairi, M., Hsieh, V. C. R., Hu, G. Q., Hu, K. J., Huda, T. M., Humayun, A., Huynh, C. K., Hwang, B. F., Iannucci, V. C., Ibitoye, S. E., Ikeda, N., Ikuta, K. S., Ilesanmi, O. S., Ilic, I. M., Ilic, M. D., Inbaraj, L. R., Ippolito, H., Iqbal, U., Irvani, S. S. N., Irvine, C. M. S., Islam, M. M., Islam, S. M. S., Iso, H., Ivers, R. Q., Iwu, C. C. D., Iwu, C. J., Iyamu, I. O., Jaafari, J., Jacobsen, K. H., Jafari, H., Jafarinia, M., Jahani, M. A., Jakovljevic, M., Jalilian, F., James, S. L., Janjani, H., Javaheri, T., Javidnia, J., Jeemon, P., Jenabi, E., Jha, R. P., Jha, V., Ji, J. S., Johansson, L., John, O., John-Akinola, Y. O., Johnson, C. O., Jonas, J. B., Joukar, F., Jozwiak, J. J., Jurisson, M., Kabir, A., Kabir, Z., Kalani, H., Kalani, R., Kalankesh, L. R., Kalhor, R., Kanchan, T., Kapoor, N., Matin, B. K., Karch, A., Karim, M. A., Kassa, G. M., Katikireddi, S. V., Kayode, G. A., Karyani, A. K., Keiyoro, P. N., Keller, C., Kemmer, L., Kendrick, P. J., Khalid, N., Khammarnia, M., Khan, E. A., Khan, M., Khatab, K., Khater, M. M., Khatib, M. N., Khayamzadeh, M., Khazaei, S., Kieling, C., Kim, Y. J., Kimokoti, R. W., Kisa, A., Kisa, S., Kivimaki, M., Knibbs, L. D., Knudsen, A. K. S., Kocarnik, J. M., Kochhar, S., Kopec, J. A., Korshunov, V. A., Koul, P. A., Koyanagi, A., Kraemer, M. U. G., Krishan, K., Krohn, K. J., Kromhout, H., Defo, B. K., Kumar, G. A., Kumar, V., Kurmi, O. P., Kusuma, D., La Vecchia, C., Ben, Lacey, Lal, D. K., Lalloo, R., Lallukka, T., Lami, F. H., Landires, I., Lang, J. J., Langan, S. M., Larsson, A. O., Lasrado, S., Lauriola, P., Lazarus, J. V., Lee, P. H., Lee, S. W. H., LeGrand, K. E., Leigh, J., Leonardi, M., Lescinsky, H., Leung, J., Levi, M., Li, S. S., Lim, L. L., Linn, S., Liu, S. W., Liu, S. M., Liu, Y., Lo, J., Lopez, A. D., Lopez, J. C. F., Lopukhov, P. D., Lorkowski, S., Lotufo, P. A., Lu, A., Lugo, A., Maddison, E. R., Mahasha, P. W., Mahdavi, M. M., Mahmoudi, M., Majeed, A., Maleki, A., Maleki, S., Malekzadeh, R., Malta, D. C., Mamun, A. A., Manda, A. L., Manguerra, H., Mansour-Ghanaei, F., Mansouri, B., Mansournia, M. A., Herrera, A. M. M., Maravilla, J. C., Marks, A., Martin, R. V., Martini, S., Martins-Melo, F. R., Masaka, A., Masoumi, S. Z., Mathur, M. R., Matsushita, K., Maulik, P. K., McAlinden, C., McGrath, J. J., McKee, M., Mehndiratta, M. M., Mehri, F., Mehta, K. M., Memish, Z. A., Mendoza, W., Menezes, R. G., Mengesha, E. W., Mereke, A., Mereta, S. T., Meretoja, A., Meretoja, T. J., Mestrovic, T., Miazgowski, B., Miazgowski, T., Michalek, I. M., Miller, T. R., Mills, E. J., Mini, G. K., Miri, M., Mirica, A., Mirrakhimov, E. M., Mirzaei, H., Mirzaei, M., Mirzaei, R., Mirzaei-Alavijeh, M., Misganaw, A. T., Mithra, P., Moazen, B., Mohammad, D. K., Mohammad, Y., Mezerji, N. M. G., Mohammadian-Hafshejani, A., Mohammadifard, N., Mohammadpourhodki, R., Mohammed, A. S., Mohammed, H., Mohammed, J. A., Mohammed, S., Mokdad, A. H., Molokhia, M., Monasta, L., Mooney, M. D., Moradi, G., Moradi, M., Moradi-Lakeh, M., Moradzadeh, R., Moraga, P., Morawska, L., Morgado-da-Costa, J., Morrison, S. D., Mosapour, A., Mosser, J. F., Mouodi, S., Mousavi, S. M., Khaneghah, A. M., Mueller, U. O., Mukhopadhyay, S., Mullany, E. C., Musa, K. I., Muthupandian, S., Nabhan, A. F., Naderi, M., Nagarajan, A. J., Nagel, G., Naghavi, M., Naghshtabrizi, B., Naimzada, M. D., Najafi, F., Nangia, V., Nansseu, J. R., Naserbakht, M., Nayak, V. C., Negoi, I., Ngunjiri, J. W., Nguyen, C. T., Nguyen, H. L. T., Nguyen, M., Nigatu, Y. T., Nikbakhsh, R., Nixon, M. R., Nnaji, C. A., Nomura, S., Norrving, B., Noubiap, J. J., Nowak, C., Nunez-Samudio, V., Oiu, A. O., Oancea, B., Odell, C. M., Ogbo, F. A., Oh, I. H., Okunga, E. W., Oladnabi, M., Olagunju, A. T., Olusanya, B. O., Olusanya, J. O., Omer, M. O., Ong, K. L., Onwujekwe, O. E., Orpana, H. M., Ortiz, A., Osarenotor, O., Osei, F. B., Ostroff, S. M., Otstavnov, N., Otstavnov, S. S., Overland, S., Owolabi, M. O., Section, M. P. A., Padubidri, J. R., Palladino, R., Panda-Jonas, S., Pandey, A., Parry, C. D. H., Pasovic, M., Pasupula, D. K., Patel, S. K., Pathak, M., Patten, S. B., Patton, G. C., Toroudi, H. P., Peden, A. E., Pennini, A., Pepito, V. C. F., Peprah, E. K., Pereira, D. M., Pesudovs, K., Pham, H. Q., Phillips, M. R., Piccinelli, C., Pilz, T. M., Piradov, M. A., Pirsaheb, M., Plass, D., Polinder, S., Polkinghorne, K. R., Pond, C. D., Postma, M. J., Pourjafar, H., Pourmalek, F., Poznanska, A., Prada, S. I., Prakash, V., Pribadi, D. R. A., Pupillo, E., Quazi Syed, Z., Rabiee, M., Rabiee, N., Radfar, A., Rafiee, A., Raggi, A., Rahman, M. A., Rajabpour-Sanati, A., Rajati, F., Rakovac, I., Ram, P., Ramezanzadeh, K., Ranabhat, C. L., Rao, P. C., Rao, S. J., Rashedi, V., Rathi, P., Rawaf, D. L., Rawaf, S., Rawal, L., Rawassizadeh, R., Rawat, R., Razo, C., Boston, S., Reiner, R. C., Reitsma, M. B., Remuzzi, G., Renjith, V., Renzaho, A. M. N., Resnikoff, S., Rezaei, N., Rezapour, A., Rhinehart, P. A., Riahi, S. M., Ribeiro, D. C., Ribeiro, D., Rickard, J., Rivera, J. A., Roberts, N. L. S., Rodriguez-Ramirez, S., Roever, L., Ronfani, L., Room, R., Roshandel, G., Roth, G. A., Rothenbacher, D., Rubagotti, E., Rwegerera, G. M., Sabour, S., Sachdev, P. S., Saddik, B., Sadeghi, E., Sadeghi, M., Saeedi, R., Moghaddam, S. S., Safari, Y., Safi, S., Safiri, S., Sagar, R., Sahebkar, A., Sajadi, S. M., Salam, N., Salamati, P., Salem, H., Salem, M. R., Salimzadeh, H., Salman, O. M., Salomon, J. A., Samad, Z., Kafil, H. S., Sambala, E. Z., Samy, A. M., Sanabria, J., Sanchez-Pimienta, T. G., Santomauro, D. F., Santos, I. S., Santos, J. V., Santric-Milicevic, M. M., Saraswathy, S. Y. I., Sarmiento-Suarez, R., Sarrafzadegan, N., Sartorius, B., Sarveazad, A., Sathian, B., Sathish, T., Sattin, D., Saxena, S., Schaeffer, L. E., Schiavolin, S., Schlaich, M. P., Schmidt, M. I., Schutte, A. E., Schwebel, D. C., Schwendicke, F., Senbeta, A. M., Senthilkumaran, S., Sepanlou, S. G., Serdar, B., Serre, M. L., Shadid, J., Shafaat, O., Shahabi, S., Shaheen, A. A., Shaikh, M. A., Shalash, A. S., Shams-Beyranvand, M., Shamsizadeh, M., Sharafi, K., Sheikh, A., Sheikhtaheri, A., Shibuya, K., Shield, K. D., Shigematsu, M., Shin, J. I., Shin, M. J., Shiri, R., Shirkoohi, R., Shuval, K., Siabani, S., Sierpinski, R., Sigfusdottir, I. D., Sigurvinsdottir, R., Silva, J. P., Simpson, K. E., Singh, J. A., Singh, P., Skiadaresi, E., Skou, S. T., Skryabin, V. Y., Smith, E. U. R., Soheili, A., Soltani, S., Soofi, M., Sorensen, R. J. D., Soriano, J. B., Sorrie, M. B., Soshnikov, S., Soyiri, I. N., Spencer, C. N., Spotin, A., Sreeramareddy, C. T., Srinivasan, V., Stanaway, J. D., Stein, C., Stein, D. J., Steiner, C., Stockfelt, L., Stokes, M. A., Straif, K., Stubbs, J. L., Sufiyan, M. B., Suleria, H. A. R., Abdulkader, R. S., Sulo, G., Sultan, I., Szumowski, L., Tabares-Seisdedos, R., Tabb, K. M., Tabuchi, T., Taherkhani, A., Tajdini, M., Takahashi, K., Takala, J. S., Tamiru, A. T., Taveira, N., Tehrani-Banihashemi, A., Temsah, M. H., Tesema, G. A., Tessema, Z. T., Thurston, G. D., Titova, M. V., Tohidinik, H. R., Tonelli, M., Topor-Madry, R., Topouzis, F., Torre, A. E., Touvier, M., Tovani-Palone, M. R., Tran, B. X., Travillian, R., Tsatsakis, A., Car, L. T., Tyrovolas, S., Uddin, R., Umeokonkwo, C. D., Unnikrishnan, B., Upadhyay, E., Vacante, M., Valdez, P. R., Van Donkelaar, A., Vasankari, T. J., Vasseghian, Y., Veisani, Y., Venketasubramanian, N., Violante, F. S., Vlassov, V., Vollset, S. E., Vos, T., Vukovic, R., Waheed, Y., Wallin, M. T., Wang, Y. F., Wang, Y. P., Watson, A., Wei, J. K., Wei, M. Y. W., Weintraub, R. G., Weiss, J., Werdecker, A., Westerman, R., Whisnant, J. L., Whiteford, H. A., Wiens, K. E., Wolfe, C. D. A., Wozniak, S. S., Wu, A. M., Wu, J. J., Hanson, S. W., Xu, G. L., Xu, R., Yadgir, S., Jabbari, S. H. Y., Yamagishi, K., Yaminfirooz, M., Yano, Y., Yaya, S., Yazdi-Feyzabadi, V., Yeheyis, T. Y., Yilgwan, C. S., Yilma, M. T., Yip, P., Yonemoto, N., Younis, M. Z., Younker, T. P., Yousefi, B., Yousefi, Z., Yousefinezhadi, T., Yousuf, A. Y., Yu, C. H., Yusefzadeh, H., Moghadam, T. Z., Zamani, M., Zamanian, M., Zandian, H., Zastrozhin, M. S., Zhang, Y. Q., Zhang, Z. J., Zhao, J. T., Zhao, X. J. G., Zhao, Y. X., Zhou, M. G., Ziapour, A., Zimsen, S. R. M., Brauer, M., Afshin, A., Lim, S. S., and Factors, G. B. D. Risk. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, 2020, 396, (10258), 1223-1249.Myriokefalitakis, S., Vrekoussis, M., Tsigaridis, K., Wittrock, F., Richter, A., Bruehl, C., Volkamer, R., Burrows, J. P., and Kanakidou, M. The influence of natural and anthropogenic secondary sources on the glyoxal global distribution. Atmospheric Chemistry and Physics, 2008, 8, (16), 4965-4981.Nakamura, Tokuhiro, Ogawa, Hiroshi, Maripi, Dileep Kumar, and Uematsu, Mitsuo. Contribution of water soluble organic nitrogen to total nitrogen in marine aerosols over the East China Sea and western North Pacific. Atmospheric Environment, 2006, 40, (37), 7259-7264.Nakamura, Tokuhiro, Narita, Yasushi, Kanazawa, Keizo, and Uematsu, Mitsuo. Organic nitrogen of atmospheric aerosols in the coastal area of Seto Inland Sea. Aerosol and Air Quality Research, 2020, 20, (5), 1016-1025.Nehir, Munevver, and Kocak, Mustafa. Atmospheric water-soluble organic nitrogen (WSON) in the eastern Mediterranean: origin and ramifications regarding marine productivity. Atmospheric Chemistry and Physics, 2018, 18, (5), 3603-3618.Ng, N. L., Kroll, J. H., Chan, A. W. H., Chhabra, P. S., Flagan, R. C., and Seinfeld, J. H. Secondary organic aerosol formation from m-xylene, toluene, and benzene. Atmospheric Chemistry and Physics, 2007, 7, (14), 3909-3922.Ng, Nga Lee, Brown, Steven S., Archibald, Alexander T., Atlas, Elliot, Cohen, Ronald C., Crowley, John N., Day, Douglas A., Donahue, Neil M., Fry, Juliane L., Fuchs, Hendrik, Griffin, Robert J., Guzman, Marcelo I., Herrmann, Hartmut, Hodzic, Alma, Iinuma, Yoshiteru, Jimenez, Jose L., Kiendler-Scharr, Astrid, Lee, Ben H., Luecken, Deborah J., Mao, Jingqiu, McLaren, Robert, Mutzel, Anke, Osthoff, Hans D., Ouyang, Bin, Picquet-Varrault, Benedicte, Platt, Ulrich, Pye, Havala O. T., Rudich, Yinon, Schwantes, Rebecca H., Shiraiwa, Manabu, Stutz, Jochen, Thornton, Joel A., Tilgner, Andreas, Williams, Brent J., and Zaveri, Rahul A. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. Atmospheric Chemistry and Physics, 2017, 17, (3), 2103-2162.Nolte, C. G., Schauer, J. J., Cass, G. R., and Simoneit, B. R. T. Highly polar organic compounds present in wood smoke and in the ambient atmosphere. Environmental Science & Technology, 2001, 35, (10), 1912-1919.Nousiainen, Timo, Zubko, Evgenij, Lindqvist, Hannakaisa, Kahnert, Michael, and Tyynela, Jani. Comparison of scattering by different nonspherical, wavelength-scale particles. Journal of Quantitative Spectroscopy & Radiative Transfer, 2012, 113, (18), 121-135.Noziere, B., Dziedzic, P., and Cordova, A. Products and kinetics of the liquid-phase reaction of glyoxal catalyzed by ammonium ions (NH4+). Journal of Physical Chemistry A, 2009, 113, (1), 231-237.Oros, D. R., and Simoneit, B. R. T. Identification and emission factors of molecular tracers in organic aerosols from biomass burning Part 2. Deciduous trees. Applied Geochemistry, 2001, 16, (13), 1545-1565.Oros, D. R., bin Abas, M. R., Omar, Nymj, Rahman, N. A., and Simoneit, B. R. T. Identification and emission factors of molecular tracers in organic aerosols from biomass burning: Part 3. Grasses. Applied Geochemistry, 2006, 21, (6), 919-940.Otto, A., Gondokusumo, R., and Simpson, M. J. Characterization and quantification of biomarkers from biomass burning at a recent wildfire site in Northern Alberta, Canada. Applied Geochemistry, 2006, 21, (1), 166-183.Ozel, M. Z., Hamilton, J. F., and Lewis, A. C. New Sensitive and Quantitative Analysis Method for Organic Nitrogen Compounds in Urban Aerosol Samples. Environmental Science & Technology, 2011, 45, (4), 1497-1505.Pai, S. J., Heald, C. L., Pierce, J. R., Farina, S. C., Marais, E. A., Jimenez, J. L., Campuzano-Jost, P., Nault, B. A., Middlebrook, A. M., Coe, H., Shilling, J. E., Bahreini, R., Dingle, J. H., and Vu, K. An evaluation of global organic aerosol schemes using airborne observations. Atmospheric Chemistry and Physics, 2020, 20, (5), 2637-2665.Panov, A. V., Prokushkin, A. S., Korets, M. A., Bryukhanov, A. V., Myers-Pigg, A. N., Louchouarn, P., Sidenko, N. V., Amon, R., Andreae, M. O., and Heimann, M.: Linking trace gas measurements and molecular tracers of organic matter in aerosols for identification of ecosystem sources and types of wildfires in Central Siberia, in: IOP Conference Series-Earth and Environmental Science, 9th International Multidisciplinary Conference and Early Career Scientists School on Environmental Observations, Modelling and Information Systems (ENVIROMIS), Tomsk, RUSSIA, 2016, WOS:000389752200017, 2016.Park, R. J., Jacob, D. J., Chin, M., and Martin, R. V. Sources of carbonaceous aerosols over the United States and implications for natural visibility. Journal of Geophysical Research-Atmospheres, 2003, 108, (D12).Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M., and Chin, M. Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy. Journal of Geophysical Research-Atmospheres, 2004, 109, (D15).Park, R. J., Jacob, D. J., Palmer, P. I., Clarke, A. D., Weber, R. J., Zondlo, M. A., Eisele, F. L., Bandy, A. R., Thornton, D. C., Sachse, G. W., and Bond, T. C. Export efficiency of black carbon aerosol in continental outflow: Global implications. Journal of Geophysical Research-Atmospheres, 2005, 110, (D11).Park, S. S., and Cho, S. Y. Characterization of organic aerosol particles observed during Asian dust events in spring 2010. Aerosol and Air Quality Research, 2013, 13, (3), 1019-1033.Parrella, J. P., Jacob, D. J., Liang, Q., Zhang, Y., Mickley, L. J., Miller, B., Evans, M. J., Yang, X., Pyle, J. A., Theys, N., and Van Roozendael, M. Tropospheric bromine chemistry: implications for present and pre-industrial ozone and mercury. Atmospheric Chemistry and Physics, 2012, 12, (15), 6723-6740.Parshintsev, J., Ruiz-Jimenez, J., Petaja, T., Hartonen, K., Kulmala, M., and Riekkola, M. L. Comparison of quartz and Teflon filters for simultaneous collection of size-separated ultrafine aerosol particles and gas-phase zero samples. Analytical and Bioanalytical Chemistry, 2011, 400, (10), 3527-3535.Pavuluri, C. M., Kawamura, K., and Fu, P. Q. Atmospheric chemistry of nitrogenous aerosols in northeastern Asia: biological sources and secondary formation. Atmospheric Chemistry and Physics, 2015, 15, (17), 9883-9896.Perring, A. E., Pusede, S. E., and Cohen, R. C. An observational perspective on the atmospheric impacts of alkyl and multifunctional nitrates on ozone and secondary organic aerosol. Chemical Reviews, 2013, 113, (8), 5848-5870.Petrone, K. C., Richards, J. S., and Grierson, P. F. Bioavailability and composition of dissolved organic carbon and nitrogen in a near coastal catchment of south-western Australia. Biogeochemistry, 2009, 92, (1-2), 27-40.Philip, S., Martin, R. V., Pierce, J. R., Jimenez, J. L., Zhang, Q., Canagaratna, M. R., Spracklen, D. V., Nowlan, C. R., Lamsal, L. N., Cooper, M. J., and Krotkov, N. A. Spatially and seasonally resolved estimate of the ratio of organic mass to organic carbon. Atmospheric Environment, 2014, 87, 34-40.Philip, S., Martin, R. V., Snider, G., Weagle, C. L., van Donkelaar, A., Brauer, M., Henze, D. K., Klimont, Z., Venkataraman, C., Guttikunda, S. K., and Zhang, Q. Anthropogenic fugitive, combustion and industrial dust is a significant, underrepresented fine particulate matter source in global atmospheric models. Environmental Research Letters, 2017, 12, (4).Pio, C. A., Legrand, M., Alves, C. A., Oliveira, T., Afonso, J., Caseiro, A., Puxbaum, H., Sanchez-Ochoa, A., and Gelencser, A. Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmospheric Environment, 2008, 42, (32), 7530-7543.Polidori, A., Turpin, B. J., Lim, H. J., Cabada, J. C., Subramanian, R., Pandis, S. N., and Robinson, A. L. Local and regional secondary organic aerosol: Insights from a year of semi-continuous carbon measurements at Pittsburgh. Aerosol Science and Technology, 2006, 40, (10), 861-872.Pye, H. O. T., Liao, H., Wu, S., Mickley, L. J., Jacob, D. J., Henze, D. K., and Seinfeld, J. H. Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol levels in the United States. Journal of Geophysical Research-Atmospheres, 2009, 114.Pye, H. O. T., and Seinfeld, J. H. A global perspective on aerosol from low-volatility organic compounds. Atmospheric Chemistry and Physics, 2010, 10, (9), 4377-4401.Qi, J. H., Shi, J. H., Gao, H. W., and Sun, Z. Atmospheric dry and wet deposition of nitrogen species and its implication for primary productivity in coastal region of the Yellow Sea, China. Atmospheric Environment, 2013, 81, 600-608.Quinn, P. K., Collins, D. B., Grassian, V. H., Prather, K. A., and Bates, T. S. Chemistry and Related Properties of Freshly Emitted Sea Spray Aerosol. Chemical Reviews, 2015, 115, (10), 4383-4399.Randerson, J. T., Thompson, M. V., Malmstrom, C. M., Field, C. B., and Fung, I. Y. Substrate limitations for heterotrophs: Implications for models that estimate the seasonal cycle of atmospheric CO2. Global Biogeochemical Cycles, 1996, 10, (4), 585-602.Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M., and Morton, D. C. Global burned area and biomass burning emissions from small fires. Journal of Geophysical Research-Biogeosciences, 2012, 117.Rastogi, Neeraj, Zhang, Xiaolu, Edgerton, Eric S., Ingall, Ellery, and Weber, Rodney J. Filterable water-soluble organic nitrogen in fine particles over the southeastern USA during summer. Atmospheric Environment, 2011, 45, (33), 6040-6047.Reche, C., Viana, M., Amato, F., Alastuey, A., Moreno, T., Hillamo, R., Teinila, K., Saarnio, K., Seco, R., Penuelas, J., Mohr, C., Prevot, A. S. H., and Querol, X. Biomass burning contributions to urban aerosols in a coastal Mediterranean City. Science of the Total Environment, 2012, 427, 175-190.Reisen, F., Meyer, C. P., McCaw, L., Powell, J. C., Tolhurst, K., Keywood, M. D., and Gras, J. L. Impact of smoke from biomass burning on air quality in rural communities in southern Australia. Atmospheric Environment, 2011, 45, (24), 3944-3953.Reisen, F., Meyer, C. P., and Keywood, M. D. Impact of biomass burning sources on seasonal aerosol air quality. Atmospheric Environment, 2013, 67, 437-447.Ren, Lujie, Bai, Huahua, Yu, Xi, Wu, Fengchang, Yue, Siyao, Ren, Hong, Li, Linjie, Lai, Senchao, Sun, Yele, Wang, Zifa, and Fu, Pingqing. Molecular composition and seasonal variation of amino acids in urban aerosols from Beijing, China. Atmospheric Research, 2018, 203, 28-35.Ridley, D. A., Heald, C. L., Pierce, J. R., and Evans, M. J. Toward resolution-independent dust emissions in global models: Impacts on the seasonal and spatial distribution of dust. Geophysical Research Letters, 2013, 40, (11), 2873-2877.Rodriguez, Alyssa A., de Loera, Alexia, Powelson, Michelle H., Galloway, Melissa M., and De Haan, David O. Formaldehyde and acetaldehyde increase aqueous-phase production of imidazoles in methylglyoxal/amine mixtures: quantifying a secondary organic aerosol formation mechanism. Environmental Science & Technology Letters, 2017, 4, (6), 234-239.Rolff, C., Elmgren, R., and Voss, M. Deposition of nitrogen and phosphorus on the Baltic Sea: seasonal patterns and nitrogen isotope composition. Biogeosciences, 2008, 5, (6), 1657-1667.Rollins, A. W., Fry, J. L., Hunter, J. F., Kroll, J. H., Worsnop, D. R., Singaram, S. W., and Cohen, R. C. Elemental analysis of aerosol organic nitrates with electron ionization high-resolution mass spectrometry. Atmospheric Measurement Techniques, 2010, 3, (1), 301-310.Rollins, A. W., Browne, E. C., Min, K. E., Pusede, S. E., Wooldridge, P. J., Gentner, D. R., Goldstein, A. H., Liu, S., Day, D. A., Russell, L. M., and Cohen, R. C. Evidence for NOx Control over Nighttime SOA Formation. Science, 2012, 337, (6099), 1210-1212.Rollins, A. W., Pusede, S., Wooldridge, P., Min, K. E., Gentner, D. R., Goldstein, A. H., Liu, S., Day, D. A., Russell, L. M., Rubitschun, C. L., Surratt, J. D., and Cohen, R. C. Gas/particle partitioning of total alkyl nitrates observed with TD-LIF in Bakersfield. Journal of Geophysical Research-Atmospheres, 2013, 118, (12), 6651-6662.Russell, K. M., Keene, W. C., Maben, J. R., Galloway, J. N., and Moody, J. L. Phase partitioning and dry deposition of atmospheric nitrogen at the mid-Atlantic US coast. Journal of Geophysical Research-Atmospheres, 2003, 108, (D21).Saarikoski, S., Sillanpaa, M., Sofiev, M., Timonen, H., Saarnio, K., Teinela, K., Karppinen, A., Kukkonen, J., and Hillamo, R. Chemical composition of aerosols during a major biomass burning episode over northern Europe in spring 2006: Experimental and modelling assessments. Atmospheric Environment, 2007, 41, (17), 3577-3589.Samset, B. H., Stjern, C. W., Andrews, E., Kahn, R. A., Myhre, G., Schulz, M., and Schuster, G. L. Aerosol Absorption: Progress Towards Global and Regional Constraints. Current Climate Change Reports, 2018, 4, (2), 65-83.Sang, X. F., Chan, C. Y., Engling, G., Chan, L. Y., Wang, X. M., Zhang, Y. N., Shi, S., Zhang, Z. S., Zhang, T., and Hu, M. Levoglucosan enhancement in ambient aerosol during springtime transport events of biomass burning smoke to Southeast China. Tellus Series B-Chemical and Physical Meteorology, 2011, 63, (1), 129-139.Sang, X. F., Gensch, I., Laumer, W., Kammer, B., Chan, C. Y., Engling, G., Wahner, A., Wissel, H., and Kiendler-Scharr, A. Stable carbon isotope ratio analysis of anhydrosugars in biomass burning aerosol particles from source samples. Environmental Science & Technology, 2012, 46, (6), 3312-3318.Schnitzler, Elijah G., Liu, Tengyu, Hems, Rachel F., and Abbatt, Jonathan P. D. Emerging investigator series: heterogeneous OH oxidation of primary brown carbon aerosol: effects of relative humidity and volatility. Environmental Science-Processes & Impacts, 2020, 22, (11), 2162-2171.Schnitzler, Elijah G., Gerrebos, Nealan G. A., Carter, Therese S., Huang, Yuanzhou, Heald, Colette L., Bertram, Allan K., and Abbatt, Jonathan P. D. Rate of atmospheric brown carbon whitening governed by environmental conditions. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, (38), e2205610119-e2205610119.Sedehi, N., Takano, H., Blasic, V. A., Sullivan, K. A., and De Haan, D. O. Temperature- and pH-dependent aqueous-phase kinetics of the reactions of glyoxal and methylglyoxal with atmospheric amines and ammonium sulfate. Atmospheric Environment, 2013, 77, 656-663.Seinfeld, John H, and Pandis, Spyros N: Atmospheric chemistry and physics: from air pollution to climate change, John Wiley & Sons, 2016.Seitzinger, S. P., Sanders, R. W., and Styles, R. Bioavailability of DON from natural and anthropogenic sources to estuarine plankton. Limnology and Oceanography, 2002, 47, (2), 353-366.Shah, Viral, Jacob, Daniel J., Moch, Jonathan M., Wang, Xuan, and Zhai, Shixian. Global modeling of cloud water acidity, precipitation acidity, and acid inputs to ecosystems. Atmospheric Chemistry and Physics, 2020, 20, (20), 12223-12245.Shahid, I., Kistler, M., Mukhtar, A., Ghauri, B. M., Cruz, C. R. S., Bauer, H., and Puxbaum, H. Chemical characterization and mass closure of PM10 and PM2.5 at an urban site in Karachi - Pakistan. Atmospheric Environment, 2016, 128, 114-123.Shandilya, Kaushik K., Khare, Mukesh, and Gupta, A. B. Organic matter determination for street dust in Delhi. Environmental Monitoring and Assessment, 2013, 185, (6), 5251-5264.Shen, R. Q., Ding, X., He, Q. F., Cong, Z. Y., Yu, Q. Q., and Wang, X. M. Seasonal variation of secondary organic aerosol tracers in Central Tibetan Plateau. Atmospheric Chemistry and Physics, 2015, 15, (15), 8781-8793.Shen, Z. X., Zhang, Q., Cao, J. J., Zhang, L. M., Lei, Y. L., Huang, Y., Huang, R. J., Gao, J. J., Zhao, Z. Z., Zhu, C. S., Yin, X. L., Zheng, C. L., Xu, H. M., and Liu, S. X. Optical properties and possible sources of brown carbon in PM2.5 over Xi'an, China. Atmospheric Environment, 2017, 150, 322-330.Shi, J. H., Gao, H. W., Qi, J. H., Zhang, J., and Yao, X. H. Sources, compositions, and distributions of water-soluble organic nitrogen in aerosols over the China Sea. Journal of Geophysical Research-Atmospheres, 2010, 115, 13.Simkin, Samuel M., Allen, Edith B., Bowman, William D., Clark, Christopher M., Belnap, Jayne, Brooks, Matthew L., Cade, Brian S., Collins, Scott L., Geiser, Linda H., Gilliam, Frank S., Jovan, Sarah E., Pardo, Linda H., Schulz, Bethany K., Stevens, Carly J., Suding, Katharine N., Throop, Heather L., and Waller, Donald M. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, (15), 4086-4091.Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O., Fraser, M. P., Rogge, W. F., and Cass, G. R. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmospheric Environment, 1999, 33, (2), 173-182.Simpson, C. D., Dills, R. L., Katz, B. S., and Kalman, D. A. Determination of levoglucosan in atmospheric fine particulate matter. Journal of the Air & Waste Management Association, 2004, 54, (6), 689-694.Singh, Gyanesh Kumar, Rajeev, Pradhi, Paul, Debajyoti, and Gupta, Tarun. Chemical characterization and stable nitrogen isotope composition of nitrogenous component of ambient aerosols from Kanpur in the Indo-Gangetic Plains. Science of the Total Environment, 2021, 763.Skorbiłowicz, Mirosław, and Skorbiłowicz, Elżbieta. Content of calcium, magnesium, sodium and potassium in the street dust from the area of Białystok (Poland). Journal of Ecological Engineering, 2019, 20, (10), 125-131.Slade, J. H., and Knopf, D. A. Heterogeneous OH oxidation of biomass burning organic aerosol surrogate compounds: assessment of volatilisation products and the role of OH concentration on the reactive uptake kinetics. Physical Chemistry Chemical Physics, 2013, 15, (16), 5898-5915.Slade, J. H., and Knopf, D. A. Multiphase OH oxidation kinetics of organic aerosol: The role of particle phase state and relative humidity. Geophysical Research Letters, 2014, 41, (14), 5297-5306.Smith, C., Nicholls, Z. R. J., Armour, K., Collins, W., Forster, P., Meinshausen, M., Palmer, M. D., and Watanabe, M.: The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity Supplementary Material, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., 2021.Soares, A. R. A., Bergstrom, A. K., Sponseller, R. A., Moberg, J. M., Giesler, R., Kritzberg, E. S., Jansson, M., and Berggren, M. New insights on resource stoichiometry: assessing availability of carbon, nitrogen, and phosphorus to bacterioplankton. Biogeosciences, 2017, 14, (6), 1527-1539.Song, Lei, Tian, Peng, Zhang, Jin-Bo, and Jin, Guang-Ze. Characteristics of Nitrogen Deposition in Heilongjiang Liangshui National Nature Reserve. Huan jing ke xue, 2018, 39, (10), 4490-4496.Song, Ling, Kuang, Fuhong, Skiba, Ute, Zhu, Bo, Liu, Xuejun, Levy, Peter, Dore, Anthony, and Fowler, David. Bulk deposition of organic and inorganic nitrogen in southwest China from 2008 to 2013. Environmental Pollution, 2017, 227, 157-166.Srinivas, Bikkina, and Sarin, M. M. Atmospheric deposition of N, P and Fe to the Northern Indian Ocean: Implications to C- and N-fixation. Science of the Total Environment, 2013, 456, 104-114.Stocker, T.F, D. Qin, Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Y. Xia, V. Bex, and Midgley, P.M. Climate Change 2013: The physical science basis. 2013.Stone, E. A., Snyder, D. C., Sheesley, R. J., Sullivan, A. P., Weber, R. J., and Schauer, J. J. Source apportionment of fine organic aerosol in Mexico City during the MILAGRO experiment 2006. Atmospheric Chemistry and Physics, 2008, 8, (5), 1249-1259.Stursova, Martina, and Sinsabaugh, Robert L. Stabilization of oxidative enzymes in desert soil may limit organic matter accumulation. Soil Biology & Biochemistry, 2008, 40, (2), 550-553.Suciu, L. G., Masiello, C. A., and Griffin, R. J. Anhydrosugars as tracers in the Earth system. Biogeochemistry, 2019, 146, (3), 209-256.Suciu, L. G., Griffin, R. J., and Masiello, C. A. A zero-dimensional view of atmospheric degradation of levoglucosan (LEVCHEM_v1) using numerical chamber simulations. Geosci. Model Dev. Discuss., 2020, 2020, 1-23.Sumlin, Benjamin J., Pandey, Apoorva, Walker, Michael J., Pattison, Robert S., Williams, Brent J., and Chakrabarty, Rajan K. Atmospheric photooxidation diminishes light absorption by primary brown carbon aerosol from biomass burning. Environmental Science & Technology Letters, 2017, 4, (12), 540-545.Sundarambal, P., Balasubramanian, R., and Tkalich, P. Atmospheric fluxes of nutrients onto Singapore Strait. Water Science and Technology, 2009, 59, (11), 2287-2295.Szidat, S., Jenk, T. M., Synal, H. A., Kalberer, M., Wacker, L., Hajdas, I., Kasper-Giebl, A., and Baltensperger, U. Contributions of fossil fuel, biomass-burning, and biogenic emissions to carbonaceous aerosols in Zurich as traced by C-14. Journal of Geophysical Research-Atmospheres, 2006, 111, (D7).Takemura, T., Nakajima, T., Dubovik, O., Holben, B. N., and Kinne, S. Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. Journal of Climate, 2002, 15, (4), 333-352.Tang, Weiyi, Llort, Joan, Weis, Jakob, Perron, Morgane M. G., Basart, Sara, Li, Zuchuan, Sathyendranath, Shubha, Jackson, Thomas, Rodriguez, Estrella Sanz, Proemse, Bernadette C., Bowie, Andrew R., Schallenberg, Christina, Strutton, Peter G., Matear, Richard, and Cassar, Nicolas. Widespread phytoplankton blooms triggered by 2019-2020 Australian wildfires. Nature, 2021, 597, (7876), 370-375.Tao, Jun, Zhang, Leiming, Cao, Junji, and Zhang, Renjian. A review of current knowledge concerning PM2.5 chemical composition, aerosol optical properties and their relationships across China. Atmospheric Chemistry and Physics, 2017, 17, (15), 9485-9518.Teich, Monique, van Pinxteren, Dominik, Wang, Michael, Kecorius, Simonas, Wang, Zhibin, Mueller, Thomas, Mocnik, Grisa, and Herrmann, Hartmut. Contributions of nitrated aromatic compounds to the light absorption of water-soluble and particulate brown carbon in different atmospheric environments in Germany and China. Atmospheric Chemistry and Physics, 2017, 17, (3), 1653-1672.Thomas, K., Volz-Thomas, A., Mihelcic, D., Smit, H. G. J., and Kley, D. On the exchange of NO3 radicals with aqueous solutions: Solubility and sticking coefficient. Journal of Atmospheric Chemistry, 1998, 29, (1), 17-43.Tian, Dalun, Xiang, Wenhua, and Yang, Wanhua. Nutrient Characteristics of Hydrological Process in Young Second-ratation Chinese Fir Plantations. Acta Ecologica Sinica, 2002, 22, (6), 859-865.Tian, Yuhua, Yang, Linzhang, Yin, Bin, and Zhu, Zhaoliang. Wet deposition N and its runoff flow during wheat seasons in the Tai Lake Region, China. Agriculture Ecosystems & Environment, 2011, 141, (1-2), 224-229.Tilgner, A., Brauer, P., Wolke, R., and Herrmann, H. Modelling multiphase chemistry in deliquescent aerosols and clouds using CAPRAM3.0i. Journal of Atmospheric Chemistry, 2013, 70, (3), 221-256.Tripathee, Lekhendra, Kang, Shichang, Chen, Pengfei, Bhattarai, Hemraj, Guo, Junming, Shrestha, Kundan Lal, Sharma, Chhatra Mani, Ghimire, Prakriti Sharma, and Huang, Jie. Water-soluble organic and inorganic nitrogen in ambient aerosols over the Himalayan middle hills: Seasonality, sources, and transport pathways. Atmospheric Research, 2021, 250.Tsagkaraki, Maria, Theodosi, Christina, Grivas, Georgios, Vargiakaki, Evanthia, Sciare, Jean, Savvides, Chrysanthos, and Mihalopoulos, Nikolaos. Spatiotemporal variability and sources of aerosol water-soluble organic nitrogen (WSON), in the Eastern Mediterranean. Atmospheric Environment, 2021, 246.Tsai, Y. I., Sopajaree, K., Chotruksa, A., Wu, H. C., and Kuo, S. C. Source indicators of biomass burning associated with inorganic salts and carboxylates in dry season ambient aerosol in Chiang Mai Basin, Thailand. Atmospheric Environment, 2013, 78, 93-104.Urban, R. C., Lima-Souza, M., Caetano-Silva, L., Queiroz, M. E. C., Nogueira, R. F. P., Allen, A. G., Cardoso, A. A., Held, G., and Campos, Mlam. Use of levoglucosan, potassium, and water-soluble organic carbon to characterize the origins of biomass-burning aerosols. Atmospheric Environment, 2012, 61, 562-569.van Breemen, N. Nitrogen cycle - natural organic tendency. Nature, 2002, 415, (6870), 381-382.van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M. Q., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S. Global fire emissions estimates during 1997-2016. Earth System Science Data, 2017, 9, (2), 697-720.Verma, Amita, Joshi, Sunil, and Singh, Deepika. Imidazole: having versatile biological activities. Journal of Chemistry, 2013, 2013.Verma, S. K., Kawamura, K., Chen, J., Fu, P. Q., and Zhu, C. M. Thirteen years of observations on biomass burning organic tracers over Chichijima Island in the western North Pacific: An outflow region of Asian aerosols. Journal of Geophysical Research-Atmospheres, 2015, 120, (9), 4155-4168.Violaki, K., and Mihalopoulos, N. Water-soluble organic nitrogen (WSON) in size-segregated atmospheric particles over the Eastern Mediterranean. Atmospheric Environment, 2010, 44, (35), 4339-4345.Violaki, K., Zarbas, P., and Mihalopoulos, N. Long-term measurements of dissolved organic nitrogen (DON) in atmospheric deposition in the Eastern Mediterranean: Fluxes, origin and biogeochemical implications. Marine Chemistry, 2010, 120, (1-4), 179-186.Violaki, K., Sciare, J., Williams, J., Baker, A. R., Martino, M., and Mihalopoulos, N. Atmospheric water-soluble organic nitrogen (WSON) over marine environments: a global perspective. Biogeosciences, 2015, 12, (10), 3131-3140.von Schneidemesser, E., Schauer, J. J., Hagler, G. S. W., and Bergin, M. H. Concentrations and sources of carbonaceous aerosol in the atmosphere of Summit, Greenland. Atmospheric Environment, 2009, 43, (27), 4155-4162.Voss, M., and Hietanen, S. The depths of nitrogen cycling. Nature, 2013, 493, (7434), 616-618.Wan, X., Kang, S. C., Li, Q. L., Rupakheti, D., Zhang, Q. G., Guo, J. M., Chen, P. F., Tripathee, L., Rupakheti, M., Panday, A. K., Wang, W., Kawamura, K., Gao, S. P., Wu, G. M., and Cong, Z. Y. Organic molecular tracers in the atmospheric aerosols from Lumbini, Nepal, in the northern Indo-Gangetic Plain: influence of biomass burning. Atmospheric Chemistry and Physics, 2017, 17, (14), 8867-8885.Wang, Chenggong, Soden, Brian J., Yang, Wenchang, and Vecchi, Gabriel A. Compensation Between Cloud Feedback and Aerosol-Cloud Interaction in CMIP6 Models. Geophysical Research Letters, 2021a, 48, (4).Wang, G. H., Chen, C. L., Li, J. J., Zhou, B. H., Xie, M. J., Hu, S. Y., Kawamura, K., and Chen, Y. Molecular composition and size distribution of sugars, sugar-alcohols and carboxylic acids in airborne particles during a severe urban haze event caused by wheat straw burning. Atmospheric Environment, 2011a, 45, (15), 2473-2479.Wang, G. H., Zhou, B. H., Cheng, C. L., Cao, J. J., Li, J. J., Meng, J. J., Tao, J., Zhang, R. J., and Fu, P. Q. Impact of Gobi desert dust on aerosol chemistry of Xi'an, inland China during spring 2009: differences in composition and size distribution between the urban ground surface and the mountain atmosphere. Atmospheric Chemistry and Physics, 2013a, 13, (2), 819-835.Wang, Junfeng, Zhang, Qi, Chen, Mindong, Collier, Sonya, Zhou, Shan, Ge, Xinlei, Xu, Jianzhong, Shi, Jinsen, Xie, Conghui, Hu, Jianlin, Ge, Shun, Sun, Yele, and Coe, Hugh. First Chemical Characterization of Refractory Black Carbon Aerosols and Associated Coatings over the Tibetan Plateau (4730 m a.s.l). Environmental Science & Technology, 2017a, 51, (24), 14072-14082.Wang, Liwei, Wang, Xinfeng, Gu, Rongrong, Wang, Hao, Yao, Lan, Wen, Liang, Zhu, Fanping, Wang, Weihao, Xue, Likun, Yang, Lingxiao, Lu, Keding, Chen, Jianmin, Wang, Tao, Zhang, Yuanghang, and Wang, Wenxing. Observations of fine particulate nitrated phenols in four sites in northern China: concentrations, source apportionment, and secondary formation. Atmospheric Chemistry and Physics, 2018a, 18, (6), 4349-4359.Wang, Q., Jacob, D. J., Fisher, J. A., Mao, J., Leibensperger, E. M., Carouge, C. C., Le Sager, P., Kondo, Y., Jimenez, J. L., Cubison, M. J., and Doherty, S. J. Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: implications for radiative forcing. Atmospheric Chemistry and Physics, 2011b, 11, (23), 12453-12473.Wang, Qiaoqiao, Jacob, Daniel J., Spackman, J. Ryan, Perring, Anne E., Schwarz, Joshua P., Moteki, Nobuhiro, Marais, Eloise A., Ge, Cui, Wang, Jun, and Barrett, Steven R. H. Global budget and radiative forcing of black carbon aerosol: Constraints from pole-to-pole (HIPPO) observations across the Pacific. Journal of Geophysical Research-Atmospheres, 2014, 119, (1), 195-206.Wang, X. Y., Meyer, C. P., Reisen, F., Keywood, M., Thai, P. K., Hawker, D. W., Powell, J., and Mueller, J. F. Emission factors for selected semivolatile organic chemicals from burning of tropical biomass fuels and estimation of annual Australian emissions. Environmental Science & Technology, 2017b, 51, (17), 9644-9652.Wang, Xuan, Heald, Colette L., Liu, Jiumeng, Weber, Rodney J., Campuzano-Jost, Pedro, Jimenez, Jose L., Schwarz, Joshua P., and Perring, Anne E. Exploring the observational constraints on the simulation of brown carbon. Atmospheric Chemistry and Physics, 2018b, 18, (2), 635-653.Wang, Xuemei, Wu, Zhiyong, Shao, Min, Fang, Yunting, Zhang, Leiming, Chen, Fei, Chan, Pak-Wai, Fan, Qi, Wang, Qian, Zhu, Shengjie, and Bao, Ruoyu. Atmospheric nitrogen deposition to forest and estuary environments in the Pearl River Delta region, southern China. Tellus Series B-Chemical and Physical Meteorology, 2013b, 65.Wang, Yujue, Hu, Min, Lin, Peng, Guo, Qingfeng, Wu, Zhijun, Li, Mengren, Zeng, Limin, Song, Yu, Zeng, Liwu, Wu, Yusheng, Guo, Song, Huang, Xiaofeng, and He, Lingyan. Molecular Characterization of Nitrogen-Containing Organic Compounds in Humic-like Substances Emitted from Straw Residue Burning. Environmental Science & Technology, 2017c, 51, (11), 5951-5961.Wang, Yujue, Hu, Min, Guo, Song, Wang, Yuchen, Zheng, Jing, Yang, Yudong, Zhu, Wenfei, Tang, Rongzhi, Li, Xiao, Liu, Ying, Le Breton, Michael, Du, Zhuofei, Shang, Dongjie, Wu, Yusheng, Wu, Zhijun, Song, Yu, Lou, Shengrong, Hallquist, Mattias, and Yu, Jianzhen. The secondary formation of organosulfates under interactions between biogenic emissions and anthropogenic pollutants in summer in Beijing. Atmospheric Chemistry and Physics, 2018c, 18, (14), 10693-10713.Wang, Yujue, Hu, Min, Wang, Yuchen, Zheng, Jing, Shang, Dongjie, Yang, Yudong, Liu, Ying, Li, Xiao, Tang, Rongzhi, Zhu, Wenfei, Du, Zhuofei, Wu, Yusheng, Guo, Song, Wu, Zhijun, Lou, Shengrong, Hallquist, Mattias, and Yu, Jian Zhen. The formation of nitro-aromatic compounds under high NOx and anthropogenic VOC conditions in urban Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, (11), 7649-7665.Wang, Yujue, Hu, Min, Li, Xiao, and Xu, Nan. Chemical composition, sources and formation mechanisms of particulate brown carbon in the atmosphere. Progress in Chemistry, 2020, 32, (5), 627-641.Wang, Z. H., Zhang, J. Y., Zhang, L. Z., Liang, Y. M., and Shi, Q. Characterization of nitroaromatic compounds in atmospheric particulate matter from Beijing. Atmospheric Environment, 2021b, 246.Wesely, M. L. Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmospheric Environment, 1989, 23, (6), 1293-1304.White, W. H. Chemical markers for sea salt in IMPROVE aerosol data. Atmospheric Environment, 2008, 42, (2), 261-274.Wu, Jian, Kong, Shaofei, Zeng, Xin, Cheng, Yi, Yan, Qin, Zheng, Huang, Yan, Yingying, Zheng, Shurui, Liu, Dantong, Zhang, Xiaoyang, Fu, Pingqing, Wang, Shuxiao, and Qi, Shihua. First high-resolution emission inventory of levoglucosan for biomass burning and non-biomass burning sources in China. Environmental Science & Technology, 2021a.Wu, L. B., Yue, S. Y., Shi, Z. B., Hu, W., Chen, J., Ren, H., Deng, J. J., Ren, L. J., Fang, Y. T., Yan, H., Li, W. J., Harrison, R. M., and Fu, P. Q. Source forensics of inorganic and organic nitrogen using delta N-15 for tropospheric aerosols over Mt. Tai. Npj Climate and Atmospheric Science, 2021b, 4, (1), 8.Xie, M. J., Hannigan, M. P., and Barsanti, K. C. Gas/particle partitioning of 2-methyltetrols and levoglucosan at an urban site in Denver. Environmental Science & Technology, 2014, 48, (5), 2835-2842.Xie, M. J., Chen, X., Hays, M. D., Lewandowski, M., Offenberg, J., Kleindienst, T. E., and Holder, A. L. Light Absorption of Secondary Organic Aerosol: Composition and Contribution of Nitroaromatic Compounds. Environmental Science & Technology, 2017, 51, (20), 11607-11616.Xie, M. J., Chen, X., Holder, A. L., Hays, M. D., Lewandowski, M., Offenberg, J. H., Kleindienst, T. E., Jaoui, M., and Hannigan, M. P. Light absorption of organic carbon and its sources at a southeastern US location in summer. Environmental Pollution, 2019, 244, 38-46.Xing, J. W., Song, J. M., Yuan, H. M., Li, X. G., Li, N., Duan, L. Q., Kang, X. M., and Wang, Q. D. Fluxes, seasonal patterns and sources of various nutrient species (nitrogen, phosphorus and silicon) in atmospheric wet deposition and their ecological effects on Jiaozhou Bay, North China. Science of the Total Environment, 2017, 576, 617-627.Xing, J. W., Song, J. M., Yuan, H. M., Wang, Q. D., Li, X. G., Li, N., Duan, L. Q., and Qu, B. X. Water-soluble nitrogen and phosphorus in aerosols and dry deposition in Jiaozhou Bay, North China: Deposition velocities, origins and biogeochemical implications. Atmospheric Research, 2018, 207, 90-99.Xiu, Bin, Liang, Sheng-kang, He, Xing-liang, Wang, Xin-ke, Cui, Zheng-guo, and Jiang, Zhi-jian. Bioavailability of dissolved organic nitrogen and its uptake by Ulva prolifera: implications in the outbreak of a green bloom off the coast of Qingdao, China. Marine Pollution Bulletin, 2019, 140, 563-572.Xu, L., Suresh, S., Guo, H., Weber, R. J., and Ng, N. L. Aerosol characterization over the southeastern United States using high-resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition and sources with a focus on organic nitrates. Atmospheric Chemistry and Physics, 2015, 15, (13), 7307-7336.Xu, S. F., Ren, L. J., Lang, Y. C., Hou, S. J., Ren, H., Wei, L. F., Wu, L. B., Deng, J. J., Hu, W., Pan, X. L., Sun, Y. L., Wang, Z. F., Su, H., Cheng, Y. F., and Fu, P. Q. Molecular markers of biomass burning and primary biological aerosols in urban Beijing: size distribution and seasonal variation. Atmospheric Chemistry and Physics, 2020a, 20, (6), 3623-3644.Xu, Weiqi, Sun, Yele, Wang, Qjngqing, Du, Wei, Zhao, Jian, Ge, Xinlei, Han, Tingting, Zhang, Yingjie, Zhou, Wei, Li, Jie, Fu, Pingqing, Wang, Zifa, and Worsnop, Douglas R. Seasonal Characterization of Organic Nitrogen in Atmospheric Aerosols Using High Resolution Aerosol Mass Spectrometry in Beijing, China. Acs Earth and Space Chemistry, 2017, 1, (10), 673-682.Xu, Weiqi, Takeuchi, Masayuki, Chen, Chun, Qiu, Yanmei, Xie, Conghui, Xu, Wanyun, Ma, Nan, Worsnop, Douglas R., Ng, Nga Lee, and Sun, Yele. Estimation of particulate organic nitrates from thermodenuder-aerosol mass spectrometer measurements in the North China Plain. Atmospheric Measurement Techniques, 2021, 14, (5), 3693-3705.Xu, Yu, Miyazaki, Yuzo, Tachibana, Eri, Sato, Kei, Ramasamy, Sathiyamurthi, Mochizuki, Tomoki, Sadanaga, Yasuhiro, Nakashima, Yoshihiro, Sakamoto, Yosuke, Matsuda, Kazuhide, and Kajii, Yoshizumi. Aerosol Liquid Water Promotes the Formation of Water-Soluble Organic Nitrogen in Submicrometer Aerosols in a Suburban Forest. Environmental Science & Technology, 2020b, 54, (3), 1406-1414.Yan, C. Q., Zheng, M., Sullivan, A. P., Shen, G. F., Chen, Y. J., Wang, S. X., Zhao, B., Cai, S. Y., Desyaterik, Y., Li, X. Y., Zhou, T., Gustafsson, O., and Collett, J. L. Residential coal combustion as a cource of levoglucosan in China. Environmental Science & Technology, 2018a, 52, (3), 1665-1674.Yan, G., and Kim, G. Sources and fluxes of organic nitrogen in precipitation over the southern East Sea/Sea of Japan. Atmospheric Chemistry and Physics, 2015, 15, (5), 2761-2774.Yan, Juping, Wang, Xiaoping, Gong, Ping, Wang, Chuanfei, and Cong, Zhiyuan. Review of brown carbon aerosols: Recent progress and perspectives. Science of the Total Environment, 2018b, 634, 1475-1485.Yang, C., Zhang, C. Y., Luo, X. S., Liu, X. Y., Cao, F., and Zhang, Y. L. Isomerization and degradation of levoglucosan via the Photo-Fenton Process: insights from aqueous-phase experiments and atmospheric particulate matter. Environmental Science & Technology, 2020, 54, (19), 11789-11797.Yang, L. M., Nguyen, D. M., Jia, S. G., Reid, J. S., and Yu, L. Y. E. Impacts of biomass burning smoke on the distributions and concentrations of C-2-C-5 dicarboxylic acids and dicarboxylates in a tropical urban environment. Atmospheric Environment, 2013, 78, 211-218.Yang, Rong, Hayashi, Kentaro, Zhu, Bin, Li, Feiyue, and Yan, Xiaoyuan. Atmospheric NH3 and NO2 concentration and nitrogen deposition in an agricultural catchment of Eastern China. Science of the Total Environment, 2010, 408, (20), 4624-4632.Ye, Z. L., Liu, J. S., Gu, A. J., Feng, F. F., Liu, Y. H., Bi, C. L., Xu, J. Z., Li, L., Chen, H., Chen, Y. F., Dai, L., Zhou, Q. F., and Ge, X. L. Chemical characterization of fine particulate matter in Changzhou, China, and source apportionment with offline aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2017, 17, (4), 2573-2592.Yttri, K. E., Dye, C., Slordal, L. H., and Braathen, O. A. Quantification of monosaccharide anhydrides by liquid chromatography combined with mass spectrometry: Application to aerosol samples from an urban and a suburban site influenced by small-scale wood burning. Journal of the Air & Waste Management Association, 2005, 55, (8), 1169-1177.Yttri, K. E., Myhre, C. L., Eckhardt, S., Fiebig, M., Dye, C., Hirdman, D., Strom, J., Klimont, Z., and Stohl, A. Quantifying black carbon from biomass burning by means of levoglucosan - a one-year time series at the Arctic observatory Zeppelin. Atmospheric Chemistry and Physics, 2014, 14, (12), 6427-6442.Yu, G., Bayer, A. R., Galloway, M. M., Korshavn, K. J., Fry, C. G., and Keutsch, F. N. Glyoxal in aqueous ammonium sulfate solutions: products, kinetics and hydration effects. Environmental Science & Technology, 2011, 45, (15), 6336-6342.Yu, Kuangyou, Zhu, Qiao, Du, Ke, and Huang, Xiao-Feng. Characterization of nighttime formation of particulate organic nitrates based on high-resolution aerosol mass spectrometry in an urban atmosphere in China. Atmospheric Chemistry and Physics, 2019, 19, (7), 5235-5249.Yu, Xu, Pan, Yuepeng, Song, Wei, Li, Sheng, Li, Dan, Zhu, Ming, Zhou, Huaishan, Zhang, Yanli, Li, Dejun, Yu, Jianzhen, Wang, Xuemei, and Wang, Xinming. Wet and dry nitrogen depositions in the Pearl River Delta, South China: observations at three typical sites with an emphasis on water-soluble organic nitrogen. Journal of Geophysical Research-Atmospheres, 2020, 125, (3).Yu, Xu, Li, Qianfeng, Ge, Yao, Li, Yumin, Liao, Kezheng, Huang, Xiaohui Hilda, Li, Jinjian, and Yu, Jian Zhen. Simultaneous determination of aerosol inorganic and organic nitrogen by thermal evolution and chemiluminescence detection. Environmental Science & Technology, 2021, 55, (17), 11579-11589.Yu, Xu, Li, Qianfeng, Liao, Kezheng, Li, Yumin, Wang, Xinming, Zhou, Yang, Liang, Yongmei, and Yu, Jian Zhen. New measurements reveal a large contribution of nitrogenous molecules to ambient organic aerosol. ChemRxiv. Cambridge: Cambridge Open Engage, 2023.Yuan, B., Liggio, J., Wentzell, J., Li, S. M., Stark, H., Roberts, J. M., Gilman, J., Lerner, B., Warneke, C., Li, R., Leithead, A., Osthoff, H. D., Wild, R., Brown, S. S., and de Gouw, J. A. Secondary formation of nitrated phenols: insights from observations during the Uintah Basin Winter Ozone Study (UBWOS) 2014. Atmospheric Chemistry and Physics, 2016, 16, (4), 2139-2153.Zamora, I. R., Tabazadeh, A., Golden, D. M., and Jacobson, M. Z. Hygroscopic growth of common organic aerosol solutes, including humic substances, as derived from water activity measurements. Journal of Geophysical Research-Atmospheres, 2011a, 116.Zamora, L. M., Prospero, J. M., and Hansell, D. A. Organic nitrogen in aerosols and precipitation at Barbados and Miami: Implications regarding sources, transport and deposition to the western subtropical North Atlantic. Journal of Geophysical Research-Atmospheres, 2011b, 116.Zangrando, R., Barbaro, E., Vecchiato, M., Kehrwald, N. M., Barbante, C., and Gambaro, A. Levoglucosan and phenols in Antarctic marine, coastal and plateau aerosols. Science of the Total Environment, 2016, 544, 606-616.Zdrahal, Z., Oliveira, J., Vermeylen, R., Claeys, M., and Maenhaut, W. Improved method for quantifying levoglucosan and related monosaccharide anhydrides in atmospheric aerosols and application to samples from urban and tropical locations. Environmental Science & Technology, 2002, 36, (4), 747-753.Zhai, Jinghao, Yang, Xin, Li, Ling, Bai, Bin, Liu, Pengfei, Huang, Yuanlong, Fu, Tzung-May, Zhu, Lei, Zeng, Zhenzhong, Tao, Shu, Lu, Xiaohui, Ye, Xingnan, Wang, Xiaofei, Wang, Lin, and Chen, Jianmin. Absorption Enhancement of Black Carbon Aerosols Constrained by Mixing-State Heterogeneity. Environmental Science & Technology, 2022, 56, (3), 1586-1593.Zhai, T. E., Zhang, J. T., Huo, S. L., Xi, B. D., Su, M. Z., Ma, C. Z., He, Z. S., and Su, J. Algal activity of dissolved organic nitrogen (DON) in the sediments of Lake Taihu, Eastern China. Environmental Earth Sciences, 2016, 75, (24).Zhang, Aoxing, Wang, Yuhang, Zhang, Yuzhong, Weber, Rodney J., Song, Yongjia, Ke, Ziming, and Zou, Yufei. Modeling the global radiative effect of brown carbon: a potentially larger heating source in the tropical free troposphere than black carbon. Atmospheric Chemistry and Physics, 2020a, 20, (4), 1901-1920.Zhang, L. M., Gong, S. L., Padro, J., and Barrie, L. A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmospheric Environment, 2001, 35, (3), 549-560.Zhang, Q., Anastasio, C., and Jimemez-Cruz, M. Water-soluble organic nitrogen in atmospheric fine particles (PM2.5) from northern California. Journal of Geophysical Research-Atmospheres, 2002, 107, (D11).Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophysical Research Letters, 2007a, 34, (13), 6.Zhang, Qi, Jimenez, Jose L., Worsnop, Douglas R., and Canagaratna, Manjula. A case study of urban particle acidity and its influence on secondary organic aerosol. Environmental Science & Technology, 2007b, 41, (9), 3213-3219.Zhang, Qi, Jimenez, Jose L., Canagaratna, Manjula R., Ulbrich, Ingrid M., Ng, Nga L., Worsnop, Douglas R., and Sun, Yele. Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review. Analytical and Bioanalytical Chemistry, 2011, 401, (10), 3045-3067.Zhang, Qian, Ning, Zhi, Shen, Zhenxing, Li, Guoliang, Zhang, Junke, Lei, Yali, Xu, Hongmei, Sun, Jian, Zhang, Leiming, Westerdahl, Dane, Gali, Nirmal Kumar, and Gong, Xuesong. Variations of aerosol size distribution, chemical composition and optical properties from roadside to ambient environment: A case study in Hong Kong, China. Atmospheric Environment, 2017a, 166, 234-243.Zhang, Qian, Shen, Zhenxing, Zhang, Leiming, Zeng, Yaling, Ning, Zhi, Zhang, Tian, Lei, Yali, Wang, Qiyuan, Li, Guohui, Sun, Jian, Westerdahl, Dane, Xu, Hongmei, and Cao, Junji. Investigation of Primary and Secondary Particulate Brown Carbon in Two Chinese Cities of Xi'an and Hong Kong in Wintertime. Environmental Science & Technology, 2020b, 54, (7), 3803-3813.Zhang, Xiaolu, Lin, Ying-Hsuan, Surratt, Jason D., and Weber, Rodney J. Sources, Composition and Absorption Angstrom Exponent of Light-absorbing Organic Components in Aerosol Extracts from the Los Angeles Basin. Environmental Science & Technology, 2013, 47, (8), 3685-3693.Zhang, Y., Song, L., Liu, X. J., Li, W. Q., Lu, S. H., Zheng, L. X., Bai, Z. C., Cai, G. Y., and Zhang, F. S. Atmospheric organic nitrogen deposition in China. Atmospheric Environment, 2012, 46, 195-204.Zhang, Y. X., Shao, M., Zhang, Y. H., Zeng, L. M., He, L. Y., Zhu, B., Wei, Y. J., and Zhu, X. L. Source profiles of particulate organic matters emitted from cereal straw burnings. Journal of Environmental Sciences, 2007c, 19, (2), 167-175.Zhang, Y. Y., Mueller, L., Winterhalter, R., Moortgat, G. K., Hoffmann, T., and Poeschl, U. Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter. Atmospheric Chemistry and Physics, 2010, 10, (16), 7859-7873.Zhang, Yuzhong, Forrister, Haviland, Liu, Jiumeng, Dibb, Jack, Anderson, Bruce, Schwarz, Joshua P., Perring, Anne E., Jimenez, Jose L., Campuzano-Jost, Pedro, Wang, Yuhang, Nenes, Athanasios, and Weber, Rodney J. Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere. Nature Geoscience, 2017b, 10, (7), 486-489.Zhao, Fengjun, Liu, Yongqiang, Goodrick, Scott, Hornsby, Benjamin, and Schardt, Jeffrey. The contribution of duff consumption to fire emissions and air pollution of the Rough Ridge Fire. International Journal of Wildland Fire, 2019, 28, (12), 993-1004.Zhao, R., Lee, A. K. Y., Huang, L., Li, X., Yang, F., and Abbatt, J. P. D. Photochemical processing of aqueous atmospheric brown carbon. Atmospheric Chemistry and Physics, 2015, 15, (11), 6087-6100.Zhao, Y. L., Kreisberg, N. M., Worton, D. R., Isaacman, G., Weber, R. J., Liu, S., Day, D. A., Russell, L. M., Markovic, M. Z., VandenBoer, T. C., Murphy, J. G., Hering, S. V., and Goldstein, A. H. Insights into Secondary Organic Aerosol Formation Mechanisms from Measured Gas/Particle Partitioning of Specific Organic Tracer Compounds. Environmental Science & Technology, 2013, 47, (8), 3781-3787.Zheng, Bo, Tong, Dan, Li, Meng, Liu, Fei, Hong, Chaopeng, Geng, Guannan, Li, Haiyan, Li, Xin, Peng, Liqun, Qi, Ji, Yan, Liu, Zhang, Yuxuan, Zhao, Hongyan, Zheng, Yixuan, He, Kebin, and Zhang, Qiang. Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions. Atmospheric Chemistry and Physics, 2018a, 18, (19), 14095-14111.Zheng, Bo, Ciais, Philippe, Chevallier, Frederic, Chuvieco, Emilio, Chen, Yang, and Yang, Hui. Increasing forest fire emissions despite the decline in global burned area. Science Advances, 2021, 7, (39).Zheng, L. S., Yang, X. Y., Lai, S. C., Ren, H., Yue, S. Y., Zhang, Y. Y., Huang, X., Gao, Y. G., Sun, Y. L., Wang, Z. F., and Fu, P. Q. Impacts of springtime biomass burning in the northern Southeast Asia on marine organic aerosols over the Gulf of Tonkin, China. Environmental Pollution, 2018b, 237, 285-297.Zhu, Q., and Zhuang, Q. Modeling the effects of organic nitrogen uptake by plants on the carbon cycling of boreal forest and tundra ecosystems. Biogeosciences, 2013, 10, (12), 7943-7955.

来源库
人工提交
成果类型学位论文
条目标识符//www.snoollab.com/handle/2SGJ60CL/553083
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
Li YM. Global Sources and Impacts of Absorptive Components in Atmospheric Organic Aerosols[D]. 香港. 香港科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11951004-李钰敏-环境科学与工程(14755KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李钰敏]的文章
百度学术
百度学术中相似的文章
[李钰敏]的文章
必应学术
必应学术中相似的文章
[李钰敏]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map