题名 | Thermal Percolation of Antiperovskite Superionic Conductor into Porous MXene Scaffold for High-Capacity and Stable Lithium Metal Battery |
作者 | |
通讯作者 | Zhao, Yusheng; Chen, Po-Yen |
发表日期 | 2022-10-01
|
DOI | |
发表期刊 | |
ISSN | 2366-9608
|
摘要 | Lithium metal battery is considered an emerging energy storage technology due to its high theoretical capacity and low electrochemical potential. However, the practical exploitations of lithium metal batteries are not realized because of uncontrollable lithium deposition and severe dendrite formation. Herein, a thermal percolation strategy is developed to fabricate a dual-conductive framework using electronically conductive Ti3C2Tx MXene aerogels (MXAs) and Li2OHCl antiperovskite superionic conductor. By melting Li2OHCl at a low temperature, the molten antiperovskite phase can penetrate the MXA scaffold, resulting in percolative electron/ion pathways. Through density functional theory calculations and electrochemical characterizations, the hybridized lithiophilic (MXA)-lithiophobic (antiperovskite) interfaces can spatially guide the deposition of lithium metals and suppress the growth of lithium dendrites. The symmetric cell with MXA-antiperovskite electrodes exhibits superior cycling stability at high areal capacities of 4 mAh cm(-2) over 1000 h. Moreover, the full cell with MXA-antiperovskite anode and high-loading LiFePO4 cathode demonstrates high energy and power densities (415.7 Wh kg(cell)(-1) and 231.0 W kg(cell)(-1)) with ultralong lifespans. The thermal percolation of lithium superionic conductor into electronically conductive scaffolds promises an efficient strategy to fabricate dual-conductive electrodes, which benefits the development of dendrite-free lithium metal anodes with high energy/power densities. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Key Program of the National Natural Science Foundation of China[51732005]
; Guangdong-Hong Kong-Macao Joint Laboratory[2019B121205001]
; Guangdong Provincial Key Laboratory[2018B030322001]
; Start-Up Fund of University of Maryland, College Park[2957431]
; MOST-AFOSR Taiwan Topological and Nanostructured Materials Grant["FA2386-21-1-4065","5284212"]
; Energy Innovation Seed Grant from the Maryland Energy Innovation Institute (MEI<^>2)[2957597]
|
WOS研究方向 | Chemistry
; Science & Technology - Other Topics
; Materials Science
|
WOS类目 | Chemistry, Physical
; Nanoscience & Nanotechnology
; Materials Science, Multidisciplinary
|
WOS记录号 | WOS:000865234700001
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | //www.snoollab.com/handle/2SGJ60CL/405944 |
专题 | 理学院_物理系 前沿与交叉科学研究院 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China 2.Southern Univ Sci & Technol, Acad Adv Interdisciplinary Studies, Shenzhen 518055, Peoples R China 3.Southern Univ Sci & Technol, Guangdong Hong Kong Macao Joint Lab Photonic Ther, Shenzhen 518055, Peoples R China 4.Southern Univ Sci & Technol, Guangdong Prov Key Lab Energy Mat Elect Power, Shenzhen 518055, Peoples R China 5.Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117585, Singapore 6.Northwestern Polytech Univ, Frontiers Sci Ctr Flexible Elect, Xian 710129, Peoples R China 7.Northwestern Polytech Univ, Xian Inst Flexible Elect, Xian 710129, Peoples R China 8.Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20740 USA 9.Maryland Robot Ctr, College Pk, MD 20740 USA |
第一作者单位 | 物理系; 前沿与交叉科学研究院; |
通讯作者单位 | 物理系; 前沿与交叉科学研究院; |
第一作者的第一单位 | 物理系 |
推荐引用方式 GB/T 7714 |
Li, Yang,Kong, Long,Yang, Haochen,et al. Thermal Percolation of Antiperovskite Superionic Conductor into Porous MXene Scaffold for High-Capacity and Stable Lithium Metal Battery[J]. Small Methods,2022.
|
APA |
Li, Yang.,Kong, Long.,Yang, Haochen.,Li, Shuai.,Deng, Zhi.,...&Chen, Po-Yen.(2022).Thermal Percolation of Antiperovskite Superionic Conductor into Porous MXene Scaffold for High-Capacity and Stable Lithium Metal Battery.Small Methods.
|
MLA |
Li, Yang,et al."Thermal Percolation of Antiperovskite Superionic Conductor into Porous MXene Scaffold for High-Capacity and Stable Lithium Metal Battery".Small Methods (2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论