题名 | Design and Fabrication of MEMS Microheater and Its Application in Gas Sensing |
姓名 | |
姓名拼音 | CHEN Yulong
|
学号 | 11653008
|
学位类型 | 博士
|
学位专业 | Doctor of Philosophy in Applied Physics and Materials Engineering
|
导师 | |
导师单位 | 材料科学与工程系
|
外机构导师 | NG Kar Wei
|
外机构导师单位 | 澳门大学
|
论文答辩日期 | 2022-02-25
|
论文提交日期 | 2022-08-24
|
学位授予单位 | 澳门大学
|
学位授予地点 | 澳门
|
摘要 | Gas sensors are widely applied in industrial production, environmental monitoring, food security, aerospace and biomedical treatment. With the development of the Internet of things, the demand for gas sensors in the consumer market is growing. In this work, a low-cost and high-performance microheater was designed and manufactured using the micro-electro-mechanical system (MEMS) process, and its application in gas sensors was studied. The design method and manufacturing process of the microheater were systematically studied, and a very simplified microheater manufacturing process was proposed for the first time and applied in practice. Then metal oxide semiconductor (MOS) gas sensors based on this microheater were manufactured. A high structure efficiency microheater-based catalytic combustion gas sensor was put forward and validated. Through optimization of design structure and key processes, a microheater that only needed a two-step lithography process was successfully validated. Small-batch production was realized at the Micro & Nano Fabrication Center in SUSTech’s Core Research Facilities. This microheater had a power consumption of less than 40 mW at 400 ºC and displayed a homogeneous temperature in the heating zone. Based on an optimized packaging process, a packaged microheater was manufactured, and the reliability of the packaging was validated. The achievements in this work will underlie the application of this microheater in the field of gas sensors. Commercially available tin oxide powders are used to prepare MEMS MOS gas sensor based on microheater developed in this work. The sensing performance towards gaseous ethanol was tested. The optimal working temperature was determined to be ~ 400 °C with a small power consumption of 39 mW. The maximum sensitivity to 10 ppm ethanol is 29.7, which exceeds that of commercial MEMS MOS sensors in the market. Based on the above microheater design method and optimized process, a microheater for catalytic combustion gas sensors was designed and manufactured. With commercially available palladium doped alumina heterogeneous catalysts, catalytic combustion gas sensors were made and used to test for methane gas sensing. High-performance catalytic combustion gas sensors based on surface tension driven self-aligned double-side coating were manufactured for the first time. The sensitivity to methane gas is increased by 69.0 % compared to that of conventional single-side coated sensor. The development and optimizations in this study pave a significant way towards advanced gas sensor applications based on MEMS microheater. |
关键词 | |
语种 | 英语
|
培养类别 | 联合培养
|
入学年份 | 2016
|
学位授予年份 | 2022-06-08
|
参考文献列表 | [1. Sberveglieri, G. (1992). Gas Sensors: Principles, Operation and Developments. Springer Science & Business Media. https://doi.org/10.1007/978-94-011-2737-02. GAS AND PARTICLE SENSORS - TECHNOLOGY AND MARKET TRENDS 2021. (2021). http://www.yole.fr/Gas_Particle_Sensors_Tehcnology_Market_Trends_2021.aspx3. Guk, K., Han, G., Lim, J., Jeong, K., Kang, T., Lim, E.-K., & Jung, J. (2019). Evolution of Wearable Devices with Real-Time Disease Monitoring for Personalized Healthcare. Nanomaterials, 9(6), 813. https://doi.org/10.3390/nano90608134. James, B. D., Huya-Kouadio, J. M., Houchins, C., & DeSantis, D. A. (2017). Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2016 Update. https://www.energy.gov/sites/prod/files/2017/06/f34/fcto_sa_2016_pemfc_transportation_cost_analysis.pdf5. Palmisano, V., Weidner, E., Boon-Brett, L., Bonato, C., Harskamp, F., Moretto, P., Post, M. B., Burgess, R., Rivkin, C., & Buttner, W. J. (2015). Selectivity and resistance to poisons of commercial hydrogen sensors. International Journal of Hydrogen Energy, 40(35), 11740–11747. https://doi.org/10.1016/j.ijhydene.2015.02.1206. Rahman, M. M., & Asiri, A. M. (2017). Electrochemical Sensors Technology. https://doi.org/10.5772/652307. Stetter, J. R., & Li, J. (2008). Amperometric Gas SensorsA Review. Chemical Reviews, 108(2), 352–366. https://doi.org/10.1021/cr06810398. Cao, Z., Buttner, W. J., & Stetter, J. R. (1992). The properties and applications of amperometric gas sensors. Electroanalysis, 4(3), 253–266. https://doi.org/10.1002/elan.11400403029. Baldini, F., Chester, A. N., Homola, J., & Martellucci, S. (2006). Optical Chemical Sensors. Springer Science & Business Media. https://doi.org/10.1007/1-4020-4611-110. Liu, H., Shi, Y., & Wang, T. (2020). Design of a six-gas NDIR gas sensor using an integrated optical gas chamber. Optics Express, 28(8), 11451–11462. https://doi.org/10.1364/OE.38871311. Wong, J. Y., & Anderson, R. L. (2012). Non-Dispersive Infrared Gas Measurement. Lulu.com. https://www.sensorsportal.com/HTML/BOOKSTORE/NDIR_Gas_Measurement.htm12. Dinh, T.-V., Choi, I.-Y., Son, Y.-S., & Kim, J.-C. (2016). A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction. Sensors and Actuators B: Chemical, 231, 529–538. https://doi.org/10.1016/j.snb.2016.03.04013. Korotcenkov, G., & Cho, B. K. (2013). Engineering approaches for the improvement of conductometric gas sensor parameters: Part 1. Improvement of sensor sensitivity and selectivity (short survey). Sensors and Actuators B: Chemical, 188, 709–728. https://doi.org/10.1016/j.snb.2013.07.10114. Korotcenkov, G., & Cho, B. K. (2011). Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey). Sensors and Actuators B: Chemical, 156(2), 527–538. https://doi.org/10.1016/j.snb.2011.02.02415. Korotcenkov, G. (2005). Gas response control through structural and chemical modification of metal oxide films: State of the art and approaches. Sensors and Actuators B: Chemical, 107(1), 209–232. https://doi.org/10.1016/j.snb.2004.10.00616. Simon, I., Bârsan, N., Bauer, M., & Weimar, U. (2001). Micromachined metal oxide gas sensors: Opportunities to improve sensor performance. Sensors and Actuators B: Chemical, 73(1), 1–26. https://doi.org/10.1016/S0925-4005(00)00639-017. Röck, F., Barsan, N., & Weimar, U. (2009). Metal Oxide Gas Sensor Arrays: Geometrical Design and Selectivity. AIP Conference Proceedings, 1137(1), 140–143. https://doi.org/10.1063/1.315649218. Lü, X., & Lu, W. (2010). Building output–input function of catalytic combustion sensor to diesel vapor. Measurement, 43(4), 596–602. https://doi.org/10.1016/j.measurement.2010.01.00319. Hübert, T., Boon-Brett, L., & Buttner, W. (2018). Sensors for Safety and Process Control in Hydrogen Technologies. CRC Press. https://doi.org/10.1201/b1914120. Hübert, T., Boon-Brett, L., Black, G., & Banach, U. (2011). Hydrogen sensors – A review. Sensors and Actuators B: Chemical, 157(2), 329–352. https://doi.org/10.1016/j.snb.2011.04.07021. Bakrania, S. D., & Wooldridge, M. S. (2009). The Effects of Two Thick Film Deposition Methods on Tin Dioxide Gas Sensor Performance. Sensors, 9(9), 6853–6868. https://doi.org/10.3390/s9090685322. Tamaekong, N., Liewhiran, C., Wisitsoraat, A., & Phanichphant, S. (2010). Flame-Spray-Made Undoped Zinc Oxide Films for Gas Sensing Applications. Sensors, 10(8), 7863–7873. https://doi.org/10.3390/s10080786323. Ramanavicius, S., Tereshchenko, A., Karpicz, R., Ratautaite, V., Bubniene, U., Maneikis, A., Jagminas, A., & Ramanavicius, A. (2020). TiO2-x/TiO2-Structure Based ‘Self-Heated’ Sensor for the Determination of Some Reducing Gases. Sensors, 20(1), 74. https://doi.org/10.3390/s2001007424. Chen, S. F., Aldalbahi, A., & Feng, P. X. (2015). Nanostructured Tungsten Oxide Composite for High-Performance Gas Sensors. Sensors, 15(10), 27035–27046. https://doi.org/10.3390/s15102703525. Bhardwaj, S. K., Bhardwaj, N., Kukkar, M., Sharma, A. L., Kim, K.-H., & Deep, A. (2015). Formation of High-Purity Indium Oxide Nanoparticles and Their Application to Sensitive Detection of Ammonia. Sensors, 15(12), 31930–31938. https://doi.org/10.3390/s15122989526. Neri, G., Bonavita, A., Milone, C., & Galvagno, S. (2003). Role of the Au oxidation state in the CO sensing mechanism of Au/iron oxide-based gas sensors. Sensors and Actuators B: Chemical, 93(1), 402–408. https://doi.org/10.1016/S0925-4005(03)00188-627. Steinhauer, S. (2021). Gas Sensors Based on Copper Oxide Nanomaterials: A Review. Chemosensors, 9(3), 51. https://doi.org/10.3390/chemosensors903005128. Ayyala, S. K., & Covington, J. A. (2021). Nickel-Oxide Based Thick-Film Gas Sensors for Volatile Organic Compound Detection. Chemosensors, 9(9), 247. https://doi.org/10.3390/chemosensors909024729. Shultz, L. R., McCullough, B., Newsome, W. J., Ali, H., Shaw, T. E., Davis, K. O., Uribe-Romo, F. J., Baudelet, M., & Jurca, T. (2020). A Combined Mechanochemical and Calcination Route to Mixed Cobalt Oxides for the Selective Catalytic Reduction of Nitrophenols. Molecules, 25(1), 89. https://doi.org/10.3390/molecules2501008930. Boulahouache, A., Kons, G., Lintz, H.-G., & Schulz, P. (1992). Oxidation of carbon monoxide on platinum-tin dioxide catalysts at low temperatures. Applied Catalysis A: General, 91(2), 115–123. https://doi.org/10.1016/0926-860X(92)85070-R31. Diéguez, A., Romano‐Rodrı́guez, A., Morante, J. R., Nelli, P., Sangaletti, L., & Sberveglieri, G. (1999). Analysis of the Thermal Oxidation of Tin Droplets and Its Implications on Gas Sensor Stability. Journal of The Electrochemical Society, 146(9), 3527. https://doi.org/10.1149/1.139250932. Morgan, D. F., & Wright, D. A. (1966). Electrical properties of single crystals of antimony-doped stannic oxide. British Journal of Applied Physics, 17(3), 337–340. https://doi.org/10.1088/0508-3443/17/3/30533. Hellmich, W., Braunmühl, Ch. B., Müller, G., Sberveglieri, G., Berti, M., & Perego, C. (1995). The kinetics of formation of gas-sensitive RGTO-SnO2 films. Thin Solid Films, 263(2), 231–237. https://doi.org/10.1016/0040-6090(95)06583-034. Mishra, A. K. (2016). Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications. Springer. https://doi.org/10.1007/978-3-319-49512-535. Kim, H.-J., & Lee, J.-H. (2014). Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sensors and Actuators B: Chemical, 192, 607–627. https://doi.org/10.1016/j.snb.2013.11.00536. Ihokura, K., & Watson, J. (1994). The Stannic Oxide Gas Sensor Principles and Applications. CRC Press. https://doi.org/10.1201/978020373589337. Leghrib, R., Pavelko, R., Felten, A., Vasiliev, A., Cané, C., Gràcia, I., Pireaux, J.-J., & Llobet, E. (2010). Gas sensors based on multiwall carbon nanotubes decorated with tin oxide nanoclusters. Sensors and Actuators B: Chemical, 145(1), 411–416. https://doi.org/10.1016/j.snb.2009.12.04438. Pavelko, R. G., Vasiliev, A. A., Llobet, E., Vilanova, X., Barrabés, N., Medina, F., & Sevastyanov, V. G. (2009). Comparative study of nanocrystalline SnO2 materials for gas sensor application: Thermal stability and catalytic activity. Sensors and Actuators B: Chemical, 137(2), 637–643. https://doi.org/10.1016/j.snb.2008.12.02539. Brinzari, V., Korotcenkov, G., Golovanov, V., Schwank, J., Lantto, V., & Saukko, S. (2002). Morphological rank of nano-scale tin dioxide films deposited by spray pyrolysis from SnCl4·5H2O water solution. Thin Solid Films, 408(1), 51–58. https://doi.org/10.1016/S0040-6090(02)00086-X40. 黄娟, 钟小华, & 朱刘. (2017). 高纯纳米二氧化锡球形粉末的制备. 广东化工, 44(14), 49–50.41. Nayral, C., Ould‐Ely, T., Maisonnat, A., Chaudret, B., Fau, P., Lescouzères, L., & Peyre‐Lavigne, A. (1999). A Novel Mechanism for the Synthesis of Tin /Tin Oxide Nanoparticles of Low Size Dispersion and of Nanostructured SnO2 for the Sensitive Layers of Gas Sensors. Advanced Materials, 11(1), 61–63.42. Zhang, G., & Liu, M. (1999). Preparation of nanostructured tin oxide using a sol-gel process based on tin tetrachloride and ethylene glycol. Journal of Materials Science, 34(13), 3213–3219. https://doi.org/10.1023/A:100468590775143. Baik, N. S., Sakai, G., Shimanoe, K., Miura, N., & Yamazoe, N. (2000). Hydrothermal treatment of tin oxide sol solution for preparation of thin-film sensor with enhanced thermal stability and gas sensitivity. Sensors and Actuators B: Chemical, 65(1), 97–100. https://doi.org/10.1016/S0925-4005(99)00403-744. Chen, X. C. (2005). Effect of Oxalic Acid on Stabilization and Property of Sb-Doped Tin Oxide Sol. Journal of Sol-Gel Science and Technology, 34(3), 267–271. https://doi.org/10.1007/s10971-005-2523-645. Seiyama, T. (Ed.). (1988). Chemical sensor technology. Volume 1. kspub. https://doi.org/10.1016/C2009-0-13116-146. Murakami, N., Tanaka, K., & Ihokura, K. (1986). Exhaust gas sensor and process for producing same US4575441A (United States Patent No. US4575441A). https://patents.google.com/patent/US4575441A/en47. Takahata, K., & Matsuura, Y. (1988). Gas sensor US4731226A (United States Patent No. US4731226A). https://patents.google.com/patent/US4731226A/en48. Liu, X. M., Wu, S. L., Chu, P. K., Chung, C. Y., Zheng, J., & Li, S. L. (2006). Effects of coating process on the characteristics of Ag–SnO2 contact materials. Materials Chemistry and Physics, 98(2), 477–480. https://doi.org/10.1016/j.matchemphys.2005.09.06749. Orel, B., Lavrenčič‐Štangar, U., & Kalcher, K. (1994). Electrochemical and Structural Properties of SnO2 and Sb: SnO2 Transparent Electrodes with Mixed Electronically Conductive and Ion‐Storage Characteristics. Journal of The Electrochemical Society, 141(9), L127. https://doi.org/10.1149/1.205517750. Wang, M., Xu, Y., Liu, Y., Wu, W., & Xu, S. (2019). Synthesis of Sb-doped SnO2 (ATO) hollow microspheres and its application in photo-thermal shielding coating. Progress in Organic Coatings, 136, 105229. https://doi.org/10.1016/j.porgcoat.2019.10522951. Kamiuchi, N., Mitsui, T., Yamaguchi, N., Muroyama, H., Matsui, T., Kikuchi, R., & Eguchi, K. (2010). Activation of Pt/SnO2 catalyst for catalytic oxidation of volatile organic compounds. Catalysis Today, 157(1), 415–419. https://doi.org/10.1016/j.cattod.2010.02.06352. 郭应辉. (2001). 偏锡酸及湿法二氧化锡开发与生产实践. 云南冶金, 06, 27–30.53. 许永姿, 彭巨擘, 蔡珊珊, & 王加俊. (2021). 市售高端电子陶瓷用二氧化锡粉体产品对比分析. 有色矿冶, 37(06), 54–58.54. 李伟, 马建林, 胡洋, & 张建国. (2016). 氧化亚锡废渣制备二氧化锡的方法研究. 云南化工, 43(01), 32–34.55. 谭翠, 林光飞, 叶仿健, & 徐灿辉. (2016). 纳米SnO_2粉体的洗涤与团聚现象研究. 中国有色冶金, 45(01), 74-77+82.56. 段富良, & 王梅. (2014). 纳米二氧化锡的应用研究进展. 化工管理, 27, 72.57. 段学臣, 陈振华, 周立, & 胡林轩. (1998). 超细氧化铟-氧化锡(ITO)复合粉末的研制与结构特性. 稀有金属, 05, 77–80.58. 伍祥武, & 黄小珂. (2011). 高纯度高比表面积氧化锡粉体的研制. 无机盐工业, 43(03), 43–44.59. F. McAleer, J., T. Moseley, P., W. Norris, J. O., E. Williams, D., & C. Tofield, B. (1988). Tin dioxide gas sensors. Part 2.—The role of surface additives. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 84(2), 441–457. https://doi.org/10.1039/F1988840044160. Tsang, S. C., Bulpitt, C. D. A., Mitchell, P. C. H., & Ramirez-Cuesta, A. J. (2001). Some New Insights into the Sensing Mechanism of Palladium Promoted Tin (IV) Oxide Sensor. The Journal of Physical Chemistry B, 105(24), 5737–5742. https://doi.org/10.1021/jp010175a61. Chen, Y., & Cao, Y. (2020). Ultrasensitive and low detection limit of acetone gas sensor based on ZnO/SnO 2 thick films. RSC Advances, 10(59), 35958–35965. https://doi.org/10.1039/D0RA06406H62. Yamazoe, N. (1991). New approaches for improving semiconductor gas sensors. Sensors and Actuators B: Chemical, 5(1), 7–19. https://doi.org/10.1016/0925-4005(91)80213-463. Richard, B. A. (1963). Apparatus for detecting combustible gases having an electrically conductive member enveloped in a refractory material US3092799A (United States Patent No. US3092799A). https://patents.google.com/patent/US3092799A/en64. Choi, Y., Tajima, K., Shin, W., Izu, N., Matsubara, I., & Murayama, N. (2006). Effect of Pt/alumina catalyst preparation method on sensing performance of thermoelectric hydrogen sensor. Journal of Materials Science, 41(8), 2333–2338. https://doi.org/10.1007/s10853-006-7154-y65. Deng, Y., Nevell, T. G., Ewen, R. J., & Honeybourne, C. L. (1993). Sulfur poisoning, recovery and related phenomena over supported palladium, rhodium and iridium catalysts for methane oxidation. Applied Catalysis A: General, 101(1), 51–62. https://doi.org/10.1016/0926-860X(93)80137-F66. Miller, J. B. (2001). Catalytic sensors for monitoring explosive atmospheres. IEEE Sensors Journal, 1(1), 88–93. https://doi.org/10.1109/JSEN.2001.92359167. Gentry, S. J., & Walsh, P. T. (1984). Poison-resistant catalytic flammable-gas sensing elements. Sensors and Actuators, 5(3), 239–251. https://doi.org/10.1016/0250-6874(84)80014-168. Münchenberger, F. M. (2021). Untersuchungen zur CMOS-kompatiblen Herstellung freistehender, thermokatalytischer Sensorelemente zur Detektion brennbarer Gase. https://doi.org/10.17185/duepublico/7441969. Bársony, I., Dücső, C., & Fürjes, P. (2009). Thermometric Gas Sensing. In E. Comini, G. Faglia, & G. Sberveglieri (Eds.), Solid State Gas Sensing (pp. 1–24). Springer US. https://doi.org/10.1007/978-0-387-09665-0_770. Ehrhardt, J.-J., Colin, L., & Jamois, D. (1997). Poisoning of platinum surfaces by hexamethyldisiloxane (HMDS): Application to catalytic methane sensors. Sensors and Actuators B: Chemical, 40(2), 117–124. https://doi.org/10.1016/S0925-4005(97)80250-X71. Comini, E., Faglia, G., & Sberveglieri, G. (2008). Solid State Gas Sensing. Springer Science & Business Media. https://doi.org/10.1007/978-0-387-09665-072. Kim, J. H., Sung, J. S., Son, Y. M., Vasiliev, A. A., Malyshev, V. V., Koltypin, E. A., Eryshkin, A. V., Godovski, D. Yu., Pisyakov, A. V., & Yakimov, S. S. (1997). Propane/butane semiconductor gas sensor with low power consumption. Sensors and Actuators B: Chemical, 44(1), 452–457. https://doi.org/10.1016/S0925-4005(97)00237-273. Yurish, S. (2014). Modern Sensors, Transducers and Sensor Networks. International Frequency Sensor Association (IFSA) Publishing. https://www.sensorsportal.com/HTML/BOOKSTORE/Advance_in_Sensors.htm74. Roy, S., & Sarkar, C. K. (2017). MEMS and Nanotechnology for Gas Sensors. CRC Press. https://doi.org/10.1201/b1892875. Johnson, C. L. (1990). Ultrathin film monolithically integrated silicon-based gas detectors. [Thesis]. http://deepblue.lib.umich.edu/handle/2027.42/10521076. Suehle, J. S., Cavicchi, R. E., Gaitan, M., & Semancik, S. (1993). Tin oxide gas sensor fabricated using CMOS micro-hotplates and in-situ processing. IEEE Electron Device Letters, 14(3), 118–120. https://doi.org/10.1109/55.21513077. Menini, P. (2012). Gas microsensor technology. In R. Lalauze (Ed.), Chemical Sensors and Biosensors. Wiley book. https://hal.archives-ouvertes.fr/hal-0204894178. Binions, R., Carmalt, C. J., & Parkin, I. P. (2006). A comparison of the gas sensing properties of solid state metal oxide semiconductor gas sensors produced by atmospheric pressure chemical vapour deposition and screen printing. Measurement Science and Technology, 18(1), 190–200. https://doi.org/10.1088/0957-0233/18/1/02479. Mercier, D., Mandrillon, V., Holtz, A., Volpi, F., Verdier, M., & Bréchet, Y. (2012). Quantitative Evolution of Electrical Contact Resistance between Aluminum Thin Films. 2012 IEEE 58th Holm Conference on Electrical Contacts (Holm), 1–8. https://doi.org/10.1109/HOLM.2012.633655080. Elwenspoek, M., & Jansen, H. V. (2004). Silicon Micromachining. Cambridge University Press.81. Bhattacharyya, P. (2014). Technological Journey Towards Reliable Microheater Development for MEMS Gas Sensors: A Review. IEEE Transactions on Device and Materials Reliability, 14(2), 589–599. https://doi.org/10.1109/TDMR.2014.231180182. Liu, H., Zhang, L., Li, K. H. H., & Tan, O. K. (2018). Microhotplates for Metal Oxide Semiconductor Gas Sensor Applications—Towards the CMOS-MEMS Monolithic Approach. Micromachines, 9(11), 557. https://doi.org/10.3390/mi911055783. Niu, G., & Wang, F. (2022). A review of MEMS-based metal oxide semiconductors gas sensor in Mainland China. Journal of Micromechanics and Microengineering. https://doi.org/10.1088/1361-6439/ac5b9884. Lyle, R. P., & Walters, D. (1997). Commercialization of silicon-based gas sensors. Proceedings of International Solid State Sensors and Actuators Conference (Transducers ’97), 2, 975–978 vol.2. https://doi.org/10.1109/SENSOR.1997.63526685. Hughes, H. G. (1995). Chemical gas sensors on silicon. Micromachined Devices and Components, 2642, 104–109. https://doi.org/10.1117/12.22115886. Ali, S. Z., Udrea, F., Milne, W. I., & Gardner, J. W. (2008). Tungsten-Based SOI Microhotplates for Smart Gas Sensors. Journal of Microelectromechanical Systems, 17(6), 1408–1417. https://doi.org/10.1109/JMEMS.2008.200722887. Cristoloveanu, S. (2001). Silicon on insulator technologies and devices: From present to future. Solid-State Electronics, 45(8), 1403–1411. https://doi.org/10.1016/S0038-1101(00)00271-988. Zeisluft, R. S. (2016). Charakterisierung und Modellierung des Leistungsbe- darfs mikroskalierter Gassensoren. Karlsruher Institut für Technologie.89. Palacín, J., Martínez, D., Clotet, E., & Tresanchez, M. (2020). Implementation of a Compact Wearable Temperature, Pressure, Humidity and Gas Sensing Device. In T. Ahram, R. Taiar, S. Colson, & A. Choplin (Eds.), Human Interaction and Emerging Technologies (pp. 825–830). Springer International Publishing. https://doi.org/10.1007/978-3-030-25629-6_12990. Preiß, E. M. (2018). CO Gas Sensor for Consumer Electronic Applications. http://universaar.uni-saarland.de/monographien/volltexte/2018/180/91. Hawley, C. (2018). Hazardous Materials Monitoring and Detection Devices. Jones & Bartlett Learning.92. Brooks, B. (2015). Transport Modeling and Response Characteristics of Commercial Catalytic Bead Sensors. https://etd.auburn.edu/handle/10415/454693. Wu, Y., Yuan, L., Hua, Z., Zhen, D., & Qiu, Z. (2019). Design and optimization of heating plate for metal oxide semiconductor gas sensor. Microsystem Technologies, 25(9), 3511–3519. https://doi.org/10.1007/s00542-019-04318-194. TGS8100: Gas Sensors and Modules—Products—Figaro Engineering Inc. (n.d.). Retrieved April 21, 2018, from http://www.figarosensor.com/products/entry/tgs8100.html95. METAL OXIDE SENSORS. (n.d.). SGX Sensortech. Retrieved April 19, 2018, from https://www.sgxsensortech.com/products-services/industrial-safety/metal-oxide-sensors/96. Gas Sensors AMS. (n.d.). Retrieved April 19, 2018, from http://ams.com/eng/Products/Environmental-Sensors/Gas-Sensors97. Multi-Pixel Gas Sensor SGP | Sensirion. (n.d.). Retrieved April 19, 2018, from https://www.sensirion.com/en/environmental-sensors/gas-sensors/multi-pixel-gas-sensors/98. TGS8100 Featured Products FIGARO USA,INC. (n.d.). Retrieved April 19, 2018, from http://www.figarosensor.com/feature/tgs8100.html99. Lawes, R. (2016). MEMS Cost Analysis: From Laboratory to Industry. Jenny Stanford Publishing. https://doi.org/10.1201/b15635100. Fitzgerald, A. M., White, C. D., & Chung, C. C. (2021). MEMS Product Development: From Concept to Commercialization. Springer Nature. https://doi.org/10.1007/978-3-030-61709-7101. IntelliSense Corp. (n.d.). IntelliSense—Products. Retrieved November 24, 2021, from https://www.intellisense.com/product.aspx?id=36102. Chaskalovic, J. (2008). Finite Element Methods for Engineering Sciences: Theoretical Approach and Problem Solving Techniques. Springer Science & Business Media. https://doi.org/10.1007/978-3-540-76343-7103. Pryor, R. (2011). Multiphysics Modeling Using COMSOL?: A First Principles Approach. Jones & Bartlett Learning.104. Moreira, J., Vale, A. C., & Alves, N. M. (2021). Spin-coated freestanding films for biomedical applications. Journal of Materials Chemistry B, 9(18), 3778–3799. https://doi.org/10.1039/D1TB00233C105. Pierson, H. O. (1999). Handbook of Chemical Vapor Deposition: Principles, Technology and Applications. William Andrew.106. Im, D.-H., Yoon, T.-W., Min, W.-S., & Hong, S.-J. (2021). Fabrication of Planar Heating Chuck Using Nichrome Thin Film as Heating Element for PECVD Equipment. Electronics, 10(20), 2535. https://doi.org/10.3390/electronics10202535107. Bashir, A., Awan, T. I., Tehseen, A., Tahir, M. B., & Ijaz, M. (2020). Chapter 3—Interfaces and surfaces. In T. I. Awan, A. Bashir, & A. Tehseen (Eds.), Chemistry of Nanomaterials (pp. 51–87). Elsevier. https://doi.org/10.1016/B978-0-12-818908-5.00003-2108. Gili, V. F. (2018). All-dielectric nonlinear nanophotonics [Phdthesis, Université Sorbonne Paris Cité]. https://tel.archives-ouvertes.fr/tel-02329466109. Franssila, S. (2010). Introduction to Microfabrication. John Wiley & Sons. https://doi.org/10.1002/9781119990413110. Maluf, N., & Williams, K. (2004). Introduction to Microelectromechanical Systems Engineering. Artech House.111. Zhou, Y. N. (2008). Microjoining and Nanojoining. Elsevier.112. Wang, X. (2019). Heterogeneous Integration Technologies Based on Wafer Bonding and Wire Bonding for Micro and Nanosystems [KTH Royal Institute of Technology]. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259161113. Dobias, B., Qiu, X., & Rybinski, W. von. (1999). Solid—Liquid Dispersions. CRC Press. https://doi.org/10.1201/9781482269727114. Ishii, T. (2018). Application 59—Development of New Materials by the Mild Dispersion of Nanoparticles in Slurries by Bead Milling. In M. Naito, T. Yokoyama, K. Hosokawa, & K. Nogi (Eds.), Nanoparticle Technology Handbook (Third Edition) (pp. 715–719). Elsevier. https://doi.org/10.1016/B978-0-444-64110-6.00066-4115. Tadros, T. F. (2014). Formulation of Disperse Systems: Science and Technology. John Wiley & Sons. https://doi.org/10.1002/9783527678297116. McKay, R. B. (1994). Technological Applications of Dispersions. CRC Press. https://doi.org/10.1201/9781003067252117. Shegokar, R. (2020). Drug Delivery Aspects: Volume 4: Expectations and Realities of Multifunctional Drug Delivery Systems. Elsevier. https://doi.org/10.1016/C2019-0-02599-X118. Korotcenkov, G. (2013). Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications Volume 1: Conventional Approaches. Springer Science & Business Media. https://doi.org/10.1007/978-1-4614-7165-3119. Xu, L., Li, T., Gao, X., & Wang, Y. (2012). A High-Performance Three-Dimensional Microheater-Based Catalytic Gas Sensor. IEEE Electron Device Letters, 33(2), 284–286. https://doi.org/10.1109/LED.2011.2177805120. Aswal, D. K., & Gupta, S. K. (2007). Science and Technology of Chemiresistor Gas Sensors. Nova Publishers.121. Puigcorbé, J., Vilà, A., Cerdà, J., Cirera, A., Gràcia, I., Cané, C., & Morante, J. R. (2002). Thermo-mechanical analysis of micro-drop coated gas sensors. Sensors and Actuators A: Physical, 97–98, 379–385. https://doi.org/10.1016/S0924-4247(01)00858-5122. Kalantar-zadeh, K., & Fry, B. (2007). Nanotechnology-Enabled Sensors. Springer Science & Business Media. https://doi.org/10.1007/978-0-387-68023-1123. Brück, R., Priebe, A., & Hahn, K. (2000). Cost Consideration for Application Specific Microsystems’ Physical Design Stages. In L. M. Silveira, S. Devadas, & R. Reis (Eds.), VLSI: Systems on a Chip: IFIP TC10 WG10.5 Tenth International Conference on Very Large Scale Integration (VLSI’99) December 1–4, 1999, Lisboa, Portugal (pp. 533–542). Springer US. https://doi.org/10.1007/978-0-387-35498-9_47124. Hartzell, A. L., Silva, M. G. da, & Shea, H. R. (2010). MEMS Reliability. Springer Science & Business Media. https://doi.org/10.1007/978-1-4419-6018-4125. 李文波, 王刚, 张卓, 胡望, 刘宏宇, 邵喜斌, & 徐征. (2010). TFT用掩模版与TFT-LCD阵列工艺. 半导体技术, 35(06), 522-526+559.126. Dhull, M., & Arora, A. (Guide). (2015). Design of MEMS Based Microheater for Efficient Gas Sensor [Thesis]. https://tudr.thapar.edu:8443/jspui/handle/10266/3475127. 陈陆丽. (2020). 氯苯检测用微纳气体传感器研究 [硕士, 上海师范大学]. https://doi.org/10.27312/d.cnki.gshsu.2020.001572128. Carpenter, M. A., Mathur, S., & Kolmakov, A. (2012). Metal Oxide Nanomaterials for Chemical Sensors. Springer Science & Business Media. https://doi.org/10.1007/978-1-4614-5395-6129. Vereshchagina, E. (2011). Low power silicon-based thermal sensors and actuators for chemical applications [DoctoralThesis, University of Twente]. https://doi.org/10.3990/1.9789036533003130. Zhao, B., Feng, F., Tian, B., Yu, Z., & Li, X. (2020). Micro thermal conductivity detector based on SOI substrate with low detection limit. Sensors and Actuators B: Chemical, 308, 127682. https://doi.org/10.1016/j.snb.2020.127682131. Byron, R., & Hassanpour, P. (2016, January 19). Reducing Stress Concentration in RF MEMS Switch by Optimizing Serpentine Spring Design. ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. https://doi.org/10.1115/DETC2015-48101132. Guo, L., Xu, L., Xu, Z., Duan, G., Wang, Y., Cai, W., Wang, Y., & Li, T. (2016). Response and stability improvement by fusing optimized micro-hotplatform and double layer bowl-like nano arrays. Sensors and Actuators B: Chemical, 231, 450–457. https://doi.org/10.1016/j.snb.2016.03.028133. Bagga, S., Akhtar, J., Mishra, S., & Preeti. (2020). Fabrication of coplanar microheater platform for LPG sensing applications. Microsystem Technologies, 26(3), 731–738. https://doi.org/10.1007/s00542-019-04586-x134. Astié, S., Gué, A. M., Scheid, E., Lescouzères, L., & Cassagnes, A. (1998). Optimization of an integrated SnO2 gas sensor using a FEM simulator. Sensors and Actuators A: Physical, 69(3), 205–211. https://doi.org/10.1016/S0924-4247(98)00096-X135. Kern, W. (1970). Cleaning solution based on hydrogen peroxide for use in silicon semiconductor technology. RCA Review, 31, 187–205.136. Kern, W. (2018). Chapter 1—Overview and Evolution of Silicon Wafer Cleaning Technology∗. In K. A. Reinhardt & W. Kern (Eds.), Handbook of Silicon Wafer Cleaning Technology (Third Edition) (pp. 3–85). William Andrew Publishing. https://doi.org/10.1016/B978-0-323-51084-4.00001-0137. Partel, S., Urban, G. A., & Motzek, K. (2013). Simulation model validation of two common i-line photoresists. Microelectronic Engineering, 110, 75–79. https://doi.org/10.1016/j.mee.2013.01.054138. Darmadi, I. (2019). Palladium-based Nanoplasmonics for Ultrafast and Deactivation-Resistant Hydrogen Detection [Chalmers University of Technology]. https://research.chalmers.se/en/publication/510006139. Schmidt, F. F. (1960). Tantalum and Tantalum Alloys: Report. Defense Metals Information Center.140. Wei, J., Ong, P. L., Tay, F. E. H., & Iliescu, C. (2008). A new fabrication method of low stress PECVD SiNx layers for biomedical applications. Thin Solid Films, 516(16), 5181–5188. https://doi.org/10.1016/j.tsf.2007.07.051141. Roosmalen, A. J. van, Baggerman, J. A. G., & Brader, S. J. H. (1991). Dry Etching for VLSI. Springer Science & Business Media. https://doi.org/10.1007/978-1-4899-2566-4142. Köhler, M. (2008). Etching in Microsystem Technology. John Wiley & Sons. https://doi.org/10.1002/9783527613786143. Kim, S. H., Ju, S.-Y., Hwang, J. H., & Ahn, J. (2003). Chemical Reaction During Pt Etching with SF6/Ar and Cl2/Ar Plasma Chemistries. Japanese Journal of Applied Physics, 42(4R), 1581. https://doi.org/10.1143/JJAP.42.1581144. Gatzert, C., Blakers, A. W., Deenapanray, P. N. K., Macdonald, D., & Auret, F. D. (2006). Investigation of reactive ion etching of dielectrics and Si in CHF3∕O2 or CHF3∕Ar for photovoltaic applications. Journal of Vacuum Science & Technology A, 24(5), 1857–1865. https://doi.org/10.1116/1.2333571145. Schaepkens, M., & Oehrlein, G. S. (2001). A Review of SiO2 Etching Studies in Inductively Coupled Fluorocarbon Plasmas. Journal of The Electrochemical Society, 148(3), C211–C221. https://doi.org/10.1149/1.1348260146. Chen, A., & Lo, R. H.-Y. (2016). Semiconductor Packaging: Materials Interaction and Reliability. CRC Press. https://doi.org/10.1201/b11260147. O’Neal, C. B., Malshe, A. P., Singh, S. B., Brown, W. D., & Eaton, W. P. (1999). Challenges in the packaging of MEMS. Proceedings International Symposium on Advanced Packaging Materials. Processes, Properties and Interfaces (IEEE Cat. No.99TH8405), 41–47. https://doi.org/10.1109/ISAPM.1999.757284148. Brown, W. D. (1998). Advanced Electronic Packaging: With Emphasis on Multichip Modules. Wiley.149. Lau, J. H., Lee, C. K., Premachandran, C. S., & Aibin, Y. (2009). Advanced MEMS Packaging. McGraw Hill Professional.150. Ren, S., Yuan, W., Qiao, D., Deng, J., & Sun, X. (2013). A Micromachined Pressure Sensor with Integrated Resonator Operating at Atmospheric Pressure. Sensors, 13(12), 17006–17024. https://doi.org/10.3390/s131217006151. Lu, D., & Wong, C. P. (2016). Materials for Advanced Packaging. Springer. https://doi.org/10.1007/978-3-319-45098-8152. Williams, M. D. (2011). Development of a MEMS piezoelectric microphone for aeroacoustic applications [PhD Thesis, University of Florida]. https://ufdc.ufl.edu/UFE0041968/00001153. Ghodssi, R., & Lin, P. (2011). MEMS Materials and Processes Handbook. Springer Science & Business Media. https://doi.org/10.1007/978-0-387-47318-5154. El Dirani, H. (2019). Development of high quality silicon nitride chips for integrated nonlinear photonics (Issue 2019LYSEC027) [Theses, Université de Lyon]. https://tel.archives-ouvertes.fr/tel-02460563155. Arimitsu, Y. (2008). Development of Thermal Release Sheet “REVALPHA®.” Journal of The Adhesion Society of Japan, 44(6), 225–229. https://doi.org/10.11618/adhesion.44.225156. Watanabe, H., Ishikawa, S., Ito, M., Sako, H., Kimura, K., Nakagawa, Y., & Shimoda, M. (2011). Micro-Structural Observation of the Bonding Interface between Au Wire and a Platinum Electrode. Transactions of JWRI, 40(1), 47–51.157. Xu, L., Li, T., Gao, X., & Wang, Y. (2011). Development of a Reliable Micro-Hotplate With Low Power Consumption. IEEE Sensors Journal, 11(4), 913–919. https://doi.org/10.1109/JSEN.2010.2064765158. Prasad, M., & Dutta, P. S. (2018). Development of micro-hotplate and its reliability for gas sensing applications. Applied Physics A, 124(11), 788. https://doi.org/10.1007/s00339-018-2210-4159. Christofferson, J., Maize, K., Ezzahri, Y., Shabani, J., Wang, X., & Shakouri, A. (2008). Microscale and Nanoscale Thermal Characterization Techniques. Journal of Electronic Packaging, 130(4). https://doi.org/10.1115/1.2993145160. Inglés Bort, R. (2010). Modelization, simulation and design of micro-electro-mechanicazed systems (mems) preconcentrators for gas sensing [Ph.D. Thesis, Universitat Rovira i Virgili]. http://www.tdx.cat/handle/10803/8483161. Oxley, C. H., Hopper, R. H., Hill, G., & Evans, G. A. (2010). Improved infrared (IR) microscope measurements and theory for the micro-electronics industry. Solid-State Electronics, 54(1), 63–66. https://doi.org/10.1016/j.sse.2009.09.022162. Wang, Y., Cheng, P., Liu, Q., Sun, Y., Zhang, X., Chen, J., & Ding, G. (2019). A nanocomposite coating improving the accuracy in infrared temperature measurement for thermal micro-devices. Sensors and Actuators A: Physical, 293, 29–36. https://doi.org/10.1016/j.sna.2019.02.019163. Cheng, J., Liang, S., Wang, J., & Li, X. (2010). A Stepwise Refining Algorithm of Temperature and Emissivity Separation for Hyperspectral Thermal Infrared Data. IEEE Transactions on Geoscience and Remote Sensing, 48(3), 1588–1597. https://doi.org/10.1109/TGRS.2009.2029852164. Hang, C. J., Wang, C. Q., Mayer, M., Tian, Y. H., Zhou, Y., & Wang, H. H. (2008). Growth behavior of Cu/Al intermetallic compounds and cracks in copper ball bonds during isothermal aging. Microelectronics Reliability, 48(3), 416–424. https://doi.org/10.1016/j.microrel.2007.06.008165. Xu, H., Liu, C., Silberschmidt, V. V., Pramana, S. S., White, T. J., Chen, Z., & Acoff, V. L. (2011). Behavior of aluminum oxide, intermetallics and voids in Cu–Al wire bonds. Acta Materialia, 59(14), 5661–5673. https://doi.org/10.1016/j.actamat.2011.05.041166. Mavinkurve, A., Goumans, L., O’Halloran, G. M., Rongen, R. T. H., & Farrugia, M.-L. (2014). Copper wire interconnect reliability evaluation using in-situ High Temperature Storage Life (HTSL) tests. Microelectronics Reliability, 54(9), 1661–1665. https://doi.org/10.1016/j.microrel.2014.07.026167. Kappler, J., & Kappler, J. T. (2001). Characterisation of high-performance SnO2 gas sensors for CO detection by in situ techniques. Tübingen, Univ.168. Debataraja, A., Zulhendri, D. W., Yuliarto, B., Nugraha, Hiskia, & Sunendar, B. (2017). Investigation of Nanostructured SnO2 Synthesized with Polyol Technique for CO Gas Sensor Applications. Procedia Engineering, 170, 60–64. https://doi.org/10.1016/j.proeng.2017.03.011169. Epifani, M., Arbiol, J., Díaz, R., Perálvarez, M. J., Siciliano, P., & Morante, J. R. (2005). Synthesis of SnO2 and ZnO Colloidal Nanocrystals from the Decomposition of Tin(II) 2-Ethylhexanoate and Zinc(II) 2-Ethylhexanoate. Chemistry of Materials, 17(25), 6468–6472. https://doi.org/10.1021/cm051642u170. Kim, K.-W., Cho, P.-S., Lee, J.-H., & Hong, S.-H. (2006). Preparation of SnO2 whiskers via the decomposition of tin oxalate. Journal of Electroceramics, 17(2), 895–898. https://doi.org/10.1007/s10832-006-7670-9171. Baik, N. S., Sakai, G., Miura, N., & Yamazoe, N. (2000). Hydrothermally treated sol solution of tin oxide for thin-film gas sensor. Sensors and Actuators B: Chemical, 63(1), 74–79. https://doi.org/10.1016/S0925-4005(99)00513-4172. Kiss, G., Josepovits, V. K., Kovács, K., Ostrick, B., Fleischer, M., Meixner, H., & Réti, F. (2003). CO sensitivity of the PtO/SnO2 and PdO/SnO2 layer structures: Kelvin probe and XPS analysis. Thin Solid Films, 436(1), 115–118. https://doi.org/10.1016/S0040-6090(03)00505-4173. Licznerski, B. W., Nitsch, K., Teterycz, H., & Wiśniewski, K. (2001). The influence of Rh surface doping on anomalous properties of thick-film SnO2 gas sensors. Sensors and Actuators B: Chemical, 79(2), 157–162. https://doi.org/10.1016/S0925-4005(01)00862-0174. Byrappa, K., & Yoshimura, M. (2012). Handbook of Hydrothermal Technology. William Andrew. https://doi.org/10.1016/C2009-0-20354-0175. Aegerter, M. A., & Mennig, M. (2013). Sol-Gel Technologies for Glass Producers and Users. Springer Science & Business Media. https://doi.org/10.1007/978-0-387-88953-5176. Herrmann, W. A., Salzer, A., & Auner, N. (1996). Synthetic Methods of Organometallic and Inorganic Chemistry: Literature, laboratory techniques, and common starting materials. Georg Thieme Verlag.177. Tournier, G., & Pijolat, C. (2005). Selective filter for SnO2-based gas sensor: Application to hydrogen trace detection. Sensors and Actuators B: Chemical, 106(2), 553–562. https://doi.org/10.1016/j.snb.2004.06.037178. Pijolat, C., Riviere, B., Kamionka, M., Viricelle, J. P., & Breuil, P. (2003). Tin dioxide gas sensor as a tool for atmospheric pollution monitoring: Problems and possibilities for improvements. Journal of Materials Science, 38(21), 4333–4346. https://doi.org/10.1023/A:1026387100072179. Hijazi, M., Rieu, M., Stambouli, V., Tournier, G., Viricelle, J.-P., & Pijolat, C. (2018). Ambient temperature selective ammonia gas sensor based on SnO2-APTES modifications. Sensors and Actuators B: Chemical, 256, 440–447. https://doi.org/10.1016/j.snb.2017.10.036180. Montmeat, P., Lalauze, R., Viricelle, J.-P., Tournier, G., & Pijolat, C. (2004). Model of the thickness effect of SnO2 thick film on the detection properties. Sensors and Actuators B: Chemical, 103(1), 84–90. https://doi.org/10.1016/j.snb.2004.04.039181. Viricelle, J. P., Pauly, A., Mazet, L., Brunet, J., Bouvet, M., Varenne, C., & Pijolat, C. (2006). Selectivity improvement of semi-conducting gas sensors by selective filter for atmospheric pollutants detection. Materials Science and Engineering: C, 26(2), 186–195. https://doi.org/10.1016/j.msec.2005.10.062182. Riviere, B., Viricelle, J.-P., & Pijolat, C. (2003). Development of tin oxide material by screen-printing technology for micro-machined gas sensors. Sensors and Actuators B: Chemical, 93(1), 531–537. https://doi.org/10.1016/S0925-4005(03)00173-4183. Lee, G.-G., & Kang, S.-J. L. (2005). Formation of large pores and their effect on electrical properties of SnO2 gas sensors. Sensors and Actuators B: Chemical, 107(1), 392–396. https://doi.org/10.1016/j.snb.2004.10.032184. Lee, S., Lee, G.-G., Kim, J., & Kang, S.-J. L. (2007). A novel process for fabrication of SnO2-based thick film gas sensors. Sensors and Actuators B: Chemical, 123(1), 331–335. https://doi.org/10.1016/j.snb.2006.08.029185. Mirzaei, A., Leonardi, S. G., & Neri, G. (2016). Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceramics International, 42(14), 15119–15141. https://doi.org/10.1016/j.ceramint.2016.06.145186. Chen, Y., Li, M., Yan, W., Zhuan, X., Ng, K. wei, & Cheng, X. (2021). Sensitive and Low-Power Metal Oxide Gas Sensors with a Low-Cost Microelectromechanical Heater. ACS Omega, 6(2), 1216–1222. https://doi.org/10.1021/acsomega.0c04340187. Heszler, P., Ionescu, R., Llobet, E., Reyes, L. F., Smulko, J. M., Kish, L. B., & Granqvist, C. G. (2007). On the selectivity of nanostructured semiconductor gas sensors. Physica Status Solidi (b), 244(11), 4331–4335. https://doi.org/10.1002/pssb.200776183188. Chen, Y., Xu, P., Li, X., Ren, Y., & Deng, Y. (2018). High-performance H2 sensors with selectively hydrophobic micro-plate for self-aligned upload of Pd nanodots modified mesoporous In2O3 sensing-material. Sensors and Actuators B: Chemical, 267, 83–92. https://doi.org/10.1016/j.snb.2018.03.180189. Ma, L., Fan, H., Tian, H., Fang, J., & Qian, X. (2016). The n-ZnO/n-In2O3 heterojunction formed by a surface-modification and their potential barrier-control in methanal gas sensing. Sensors and Actuators B: Chemical, 222, 508–516. https://doi.org/10.1016/j.snb.2015.08.085190. Wu, L., Zhang, T., Wang, H., Tang, C., & Zhang, L. (2019). A Novel Fabricating Process of Catalytic Gas Sensor Based on Droplet Generating Technology. Micromachines, 10(1), 71. https://doi.org/10.3390/mi10010071191. Bartlett, P. N., & Guerin, S. (2003). A Micromachined Calorimetric Gas Sensor: An Application of Electrodeposited Nanostructured Palladium for the Detection of Combustible Gases. Analytical Chemistry, 75(1), 126–132. https://doi.org/10.1021/ac026141w192. Dücső, C., Ádám, M., Fürjes, P., Hirschfelder, M., Kulinyi, S., & Bársony, I. (2003). Explosion-proof monitoring of hydrocarbons by mechanically stabilised, integrable calorimetric microsensors. Sensors and Actuators B: Chemical, 95(1), 189–194. https://doi.org/10.1016/S0925-4005(03)00415-5193. Xu, L., Li, T., Gao, X., Wang, Y., Zheng, R., Xie, L., & Lee, L. (2011). A low power catalytic combustion gas sensor based on a suspended membrane microhotplate. 2011 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 92–95. https://doi.org/10.1109/NEMS.2011.6017303194. Hadano, H., Miyagi, A., Okuno, T., Nagawa, Y., & Ishiguro, Y. (2016). Development of a Catalytic Combustion Type Gas Sensor with Low Power Consumption. ECS Transactions, 75(16), 195. https://doi.org/10.1149/07516.0195ecst195. Karpov, E. Е., Karpov, Е. F., Suchkov, А., Mironov, S., Baranov, A., Sleptsov, V., & Calliari, L. (2013). Energy efficient planar catalytic sensor for methane measurement. Sensors and Actuators A: Physical, 194, 176–180. https://doi.org/10.1016/j.sna.2013.01.057196. Li, T., Xu, L., & Wang, Y. (2017). Micro-heater-Based Gas Sensors. In Q.-A. Huang (Ed.), Micro Electro Mechanical Systems (pp. 1–37). Springer. https://doi.org/10.1007/978-981-10-2798-7_21-1197. Bechtold, T., Rudnyi, E. B., & Korvink, J. G. (2006). Fast Simulation of Electro-Thermal MEMS: Efficient Dynamic Compact Models. Springer Science & Business Media. https://doi.org/10.1007/978-3-540-34613-5198. Becker, T., Ahlers, S., Bosch-v.Braunmühl, C., Müller, G., & Kiesewetter, O. (2001). Gas sensing properties of thin- and thick-film tin-oxide materials. Sensors and Actuators B: Chemical, 77(1), 55–61. https://doi.org/10.1016/S0925-4005(01)00672-4 |
来源库 | 人工提交
|
成果类型 | 学位论文 |
条目标识符 | //www.snoollab.com/handle/2SGJ60CL/382383 |
专题 | 工学院_材料科学与工程系 |
推荐引用方式 GB/T 7714 |
Chen YL. Design and Fabrication of MEMS Microheater and Its Application in Gas Sensing[D]. 澳门. 澳门大学,2022.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
11653008-陈宇龙-材料科学与工程(12357KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[陈宇龙]的文章 |
百度学术 |
百度学术中相似的文章 |
[陈宇龙]的文章 |
必应学术 |
必应学术中相似的文章 |
[陈宇龙]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论