中文版 | English
题名

基于拓扑边缘态输运性质的器件设计与研究

其他题名
DESIGN AND RESEARCH OF DEVICES BASED ON TRANSPORT PROPERTIES OF TOPOLOGICAL EDGE STATES
姓名
姓名拼音
XU Yong
学号
11849470
学位类型
博士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
徐虎
导师单位
物理系
论文答辩日期
2022-05-19
论文提交日期
2022-07-26
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

拓扑绝缘体是近年来在凝聚态物理领域发现的一类新型物质相,以其独特的性质而受到研究者广泛关注。拓扑绝缘体的体能隙中会出现基于体边对应关系而产生的拓扑边缘态,这种边缘态通常表现出无质量的线性色散关系,提供的传输通道具有自旋和动量锁定、高迁移率、低耗散以及不受局部缺陷和杂质影响等特点。因此基于拓扑绝缘体的拓扑晶体管为新型电子元器件和自旋电子器件的设计提供了新方向,然而目前拓扑晶体管设计方案通常需要复杂的外场调控系统发生拓扑相变。在这种情况下,探究无需系统发生拓扑相变的拓扑晶体管对提升电子元器件性能具有重要的科学意义。

另一种备受关注的拓扑材料是拓扑超导体,它不仅具有超导能隙而且在能隙内存在手征边缘态,其手征边缘态可描述为满足非阿贝尔统计的马约拉纳费米子。马约拉纳费米子的非局域简并基态可用于构成拓扑量子比特,有望实现容错量子计算。一直以来对于实验上是否真正探测到马约拉纳费米子仍然存在一些争议,因此寻找可供实验上验证马约拉纳费米子存在的直接证据对促进拓扑量子计算的发展具有十分重要的意义。

本论文主要研究了拓扑边缘态的量子隧穿效应以及非局域安德烈夫反射效应。基于拓扑边缘态量子隧穿效应提出了一种无需拓扑相变的拓扑晶体管设计方案,并系统地分析了拓扑晶体管的性能以及实验可行性;同时利用拓扑边缘态的非局域安德烈夫反射,在超导异质结中实现了由电场调制的反常约瑟夫森效应和马约拉纳模量子相干输运现象;基于表面态和体态干涉效应,提出了一种由横向电场调制的单结超导量子干涉仪设计方案。具体的研究内容包括以下几点:

1)采用一维方势垒散射模型近似求解了拓扑边缘态与能隙间的散射系数并研究了散射系数与能隙大小、入射能量以及电场的依赖关系。在此基础之上,基于二维拓扑绝缘体边缘态隧穿效应设计了一种通过电场调制的拓扑晶体管。数值模拟结果发现拓扑晶体管的量子化电导倍数在电场调制下发生从01的跃变,实现了一种完美的开关工作状态,且量子化电导跃变过程不需要发生拓扑相变。同时受拓扑性质的保护,量子化电导对无序和杂质表现出较强的鲁棒特性以及较高的温度适用范围;基于二维磁性拓扑绝缘体的手征边缘态隧穿提出了一种对磁场敏感的拓扑晶体管设计方案。通过数值模拟发现这种拓扑晶体管对磁场方向和强度的变化非常敏感,因此未来有望在磁场敏感探测领域实现应用。

2)研究了拓扑超导异质结中非局域安德烈夫束缚态在电场作用下的输运性质。在拓扑超导界面上,手征马约拉纳模可诱导拓扑边缘态电子发生非局域安德烈夫反射,导致电子和空穴空间分离,形成具有非局域性质的安德烈夫束缚态。通过外加横向电场改变空间分离的电子和空穴的能量,使得非局域安德烈夫束缚态发生相位移动,实现了反常约瑟夫森效应。此外,非局域安德烈夫束缚态相位移动会诱导手征马约拉纳模产生量子相干输运,由此实现了一种由外加横向电场控制的电导振荡效应。这些结果为实验验证手征马约拉纳模的存在提供了理论依据,并在相位调控的约瑟夫森器件和基于手征马约拉纳模的拓扑晶体管中具有潜在的应用前景。

3)研究了由外尔半金属组成的单个约瑟夫森结在电场作用下的超导量子干涉现象。其中拓扑表面态由于发生非局域安德烈夫反射可以实现一种由电场调控的反常约瑟夫森效应,其基态相位与横向电场和截面面积的乘积成正比;而体态约瑟夫森效应的基态相位不受横向电场的影响。因此在横向电场的调制下,拓扑表面态约瑟夫森电流与体态电流的相位差诱导电流产生量子干涉效应,从而实现了电场调制的超导量子干涉仪。该结果为超导电子学和超导量子计算的应用提供了新的平台。

其他摘要

As a new class of matter phase, topological insulators have attracted extensive attention in recent years due to their unique properties. For topological insulators, topological edge states can emerge in the energy gap based on the bulk-edge correspondence relation. Such edge states generally exhibit a massless linear dispersion relationship, enabling a transport channel to be spin and momentum locking, high mobility, low dissipation, and insensitivity to local defects and impurities, etc. Hence, topological transistors based on topological insulators can provide a new direction for the design of novel electronic components and spintronic devices. However, the proposed topological transistors strategy usually requires topological phase transition which needs complex external field. Therefore, it is of great significance to explore topological transistors without topological phase transition. 

The other kind of topological matter that attracts much attention is topological superconductors which have superconducting gap and chiral edge states in the gap. The behavior of this edge states can be described as Majorana Fermions, satisfying non-Abelian statistics. Majorana Fermions have a non-local degenerate ground state, which might be used in fault-tolerant quantum computation. However, there are still some controversies over whether Majorana fermions have been confirmed experimentally. Thus, it is very important for the development of topological quantum computing to find direct evidence for the existence of Majorana Fermions. 

In this thesis, we mainly study the quantum tunneling and non-local Andreev reflection of the topological edge states. Based on the quantum tunneling effect of topological edge states, a design of topological transistors without topological phase transition is proposed. The performance and experimental feasibility of the topological transistor have been systematically analyzed. The anomalous Josephson effect and quantum coherent transportation of Majorana mode modulated by the electric field are realized in the superconducting heterojunction according to the non-local Andreev reflections of topological edge states. Based on the interference effect between topological surface states and bulk states, an electrically modulated superconducting quantum interference device consisting of a single Josephson junction is proposed. The specific research contents are summarized as follows:

(1) The scattering coefficient between topological edge states and gaps is approximately solved using one-dimensional square barrier scattering model, and its dependence on the size of energy gap, incident energy and electric field have been studied. On this basis, we design an electric-field-modulated topological transistor based on the helical edge states tunneling in a two-dimensional topological insulator. The calculated results show that the topological transistor can realize a quantized conductance from 0 to 1, exbiting a perfect on/off performance. Such quantized conductance jump does not require topological phase transition. In addition, the quantized conductance of the topological transistor is robust to disorder and impurity and persists at a high applicable temperature due to the topological property. We also design a magnetic sensitive topological transistor based on the chiral edge states of two-dimendional magnetic topological insulator. The numerical simulated results show that the topological transistor is extremely sensitive to both the direction and intensity of the magnetic field, and thus it may find potential application in magnetic field sensors.

(2) The transport property of the non-local Andreev bound states in topological superconductor heterojunction modulated by electric field is studied here. The chiral Majorana modes appeared at the topological superconducting interface can induce non-local Andreev reflections of edge states, which leads to the separation of electrons and holes and thus forms the non-local Andreev bound states. The phase of such non-local Andreev bound states can be shifted derived from the electrically tunable energy change of the spatially separated electrons and holes. As a result, an electrically modulated anomalous Josephson effect should be observable. Moreover, the electrically tunable phase shift in non-local Andreev bound states results in a conductance oscillation because of the quantum coherent transportation of the chiral Majorana modes. These findings provide different proposals to experimentally verify the existence of chiral Majorana modes, and promise potential applications in phase-controllable Josephson devices and topological transistors based on chiral Majorana modes.

(3) The superconducting quantum interference of a single Josephson junction composed of Weyl semi-metal is studied. Owing to non-local Andreev reflection, the topological edge states can realize an anomalous Josephson effect, which can be modulated by electric field. The ground state phase is proportional to the product of the transverse electric field and cross-section area of the junction. However, the Josephson effect contributed by bulk states cannot be affected by the transverse electric field and the related ground state phase remains unchanged. Thus, a phase difference between the topological surface states and bulk states occurs under the modulation of the transverse electric field, producing the quantum interference effect of the current consequently. These results promise a platform for applications in the fields of superconducting electronics and superconducting quantum computation.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2022-07
参考文献列表

[1] Hasan M Z, Kane C L. Colloquium: Topological insulators[J]. Reviews ofModern Physics, 2010, 82(4): 3045–3067.
[2] Qi X-L, Zhang S-C. Topological insulators and superconductors[J]. Reviewsof Modern Physics, 2011, 83(4): 1057–1110.
[3] Ando Y. Topological Insulator Materials[J]. Journal of the Physical Societyof Japan, 2013, 82(10): 102001.
[4] Zhang H, Liu C-X, Qi X-L, Dai X, Fang Z, Zhang S-C. Topologicalinsulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on thesurface[J]. Nature Physics, 2009, 5(6): 438–442.
[5] Xu G, Weng H, Wang Z, Dai X, Fang Z. Chern Semimetal and the QuantizedAnomalous Hall Effect in HgCr2Se4[J]. Physical Review Letters, 2011,107(18): 186806.
[6] Hasan M Z, Xu S-Y, Belopolski I, Huang S-M. Discovery of Weyl FermionSemimetals and Topological Fermi Arc States[J]. Annual Review ofCondensed Matter Physics, 2017, 8(1): 289–309.
[7] Yan B, Felser C. Topological Materials: Weyl Semimetals[J]. Annual Reviewof Condensed Matter Physics, 2017, 8(1): 337–354.
[8] Li S, Yu Z-M, Yao Y, Yang S A. Type-II topological metals[J]. Frontiers ofPhysics, 2020, 15(4): 43201.
[9] Huang S-M, Xu S-Y, Belopolski I, Lee C-C, Chang G, Chang T-R, Wang B,Alidoust N, Bian G, Neupane M, Sanchez D, Zheng H, Jeng H-T, Bansil A,Neupert T, Lin H, Hasan M Z. New type of Weyl semimetal with quadraticdouble Weyl fermions[J]. Proceedings of the National Academy of Sciences,2016, 113(5): 1180–1185.
[10] Katsnelson M I, Novoselov K S, Geim A K. Chiral tunnelling and the Kleinparadox in graphene[J]. Nature Physics, 2006, 2(9): 620–625.
[11] Liang T, Gibson Q, Ali M N, Liu M, Cava R J, Ong N P. Ultrahigh mobilityand giant magnetoresistance in the Dirac semimetal Cd3As2[J]. NatureMaterials, 2015, 14(3): 280–284.
[12] Armitage N P, Mele E J, Vishwanath A. Weyl and Dirac semimetals inthree-dimensional solids[J]. Reviews of Modern Physics, 2018, 90(1):015001.
[13] Xie B, Wang H-X, Zhang X, Zhan P, Jiang J-H, Lu M, Chen Y. Higher-orderband topology[J]. Nature Reviews Physics, 2021, 3(7): 520–532.
[14] Wei Q, Zhang X, Deng W, Lu J, Huang X, Yan M, Chen G, Liu Z, Jia S.Higher-order topological semimetal in acoustic crystals[J]. Nature Materials,2021, 20(6): 812–817.
[15] Ghorashi S A A, Li T, Hughes T L. Higher-Order Weyl Semimetals[J].Physical Review Letters, 2020, 125(26): 266804.
[16] Wang H-X, Lin Z-K, Jiang B, Guo G-Y, Jiang J-H. Higher-Order WeylSemimetals[J]. Physical Review Letters, 2020, 125(14): 146401.
[17] Luo L, Wang H-X, Lin Z-K, Jiang B, Wu Y, Li F, Jiang J-H. Observation of aphononic higher-order Weyl semimetal[J]. Nature Materials, 2021, 20(6):794–799.
[18] Benalcazar W A, Bernevig B A, Hughes T L. Quantized electric multipoleinsulators[J]. Science, 2017, 357(6346): 61–66.
[19] Lin M, Hughes T L. Topological quadrupolar semimetals[J]. Physical ReviewB, 2018, 98(24): 241103.
[20] Haldane F D M. Nobel Lecture: Topological quantum matter[J]. Reviews ofModern Physics, 2017, 89(4): 040502.
[21] Lv B Q, Qian T, Ding H. Experimental perspective on three-dimensionaltopological semimetals[J]. Reviews of Modern Physics, 2021, 93(2): 025002.
[22] Wray L A. Topological transistor[J]. Nature Physics, 2012, 8(10): 705–706.
[23] Ezawa M. Quantized conductance and field-effect topological quantumtransistor in silicene nanoribbons[J]. Applied Physics Letters, 2013, 102(17):172103.
[24] König M, Buhmann H, W. Molenkamp L, Hughes T, Liu C-X, Qi X-L, ZhangS-C. The Quantum Spin Hall Effect: Theory and Experiment[J]. Journal ofthe Physical Society of Japan, 2008, 77(3): 031007.
[25] Yang Y, Xu Z, Sheng L, Wang B, Xing D Y, Sheng D N.Time-Reversal-Symmetry-Broken Quantum Spin Hall Effect[J]. PhysicalReview Letters, 2011, 107(6): 066602.
[26] Niu Q, Thouless D J, Wu Y-S. Quantized Hall conductance as a topologicalinvariant[J]. Physical Review B, 1985, 31(6): 3372–3377.
[27] Otrokov M M, Menshchikova T V, Vergniory M G, Rusinov I P, YuVyazovskaya A, Koroteev Y M, Bihlmayer G, Ernst A, Echenique P M,Arnau A, Chulkov E V. Highly-ordered wide bandgap materials for quantizedanomalous Hall and magnetoelectric effects[J]. 2D Materials, 2017, 4(2):025082.
[28] Ge J, Liu Y, Li J, Li H, Luo T, Wu Y, Xu Y, Wang J. High-Chern-number andhigh-temperature quantum Hall effect without Landau levels[J]. NationalScience Review, 2020, 7(8): 1280–1287.
[29] 何珂. 从磁性掺杂拓扑绝缘体到内禀磁性拓扑绝缘体-通往高温量子反常霍尔效应之路[J]. 物理, 2020, 49(12): 828.
[30] Culcer D, Keser A C, Li Y, Tkachov G. Transport in two-dimensionaltopological materials: recent developments in experiment and theory[J]. 2DMaterials, 2020, 7(2): 022007.
[31] Chen C-Z, Jiang H, Xu D-H, Xie X C. Emergent Z2 topological invariant androbust helical edge states in two-dimensional topological metals[J]. ScienceChina Physics, Mechanics & Astronomy, 2020, 63(10): 107811.
[32] He K. Raise quantum anomalous Hall states up[J]. National Science Review,2021, 8(1): nwaa214.
[33] Ji H-R, Liu Y-Z, Wang H, Luo J-W, Li J-H, Li H, Wu Y, Xu Y, Wang J.Detection of Magnetic Gap in Topological Surface States of MnBi2Te4[J].Chinese Physics Letters, 2021, 38(10): 107404.
[34] Freedman M, Kitaev A, Larsen M, Wang Z. Topological quantumcomputation[J]. Bulletin of the American Mathematical Society, 2002, 40(1):31–38.
[35] Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S. Non-Abeliananyons and topological quantum computation[J]. Reviews of Modern Physics,2008, 80(3): 1083–1159.
[36] Alicea J. New directions in the pursuit of Majorana fermions in solid statesystems[J]. Reports on Progress in Physics, 2012, 75(7): 076501.
[37] Beenakker C W J. Search for Majorana Fermions in Superconductors[J].Annual Review of Condensed Matter Physics, 2013, 4(1): 113–136.
[38] Elliott S R, Franz M. Colloquium: Majorana fermions in nuclear, particle,and solid-state physics[J]. Reviews of Modern Physics, 2015, 87(1): 137–163.
[39] Sarma S D, Freedman M, Nayak C. Majorana zero modes and topologicalquantum computation[J]. npj Quantum Information, 2015, 1(1): 15001.
[40] Lahtinen V, Pachos J. A Short Introduction to Topological QuantumComputation[J]. SciPost Physics, 2017, 3(3): 021.
[41] Lutchyn R M, Bakkers E P A M, Kouwenhoven L P, Krogstrup P, Marcus CM, Oreg Y. Majorana zero modes in superconductor–semiconductorheterostructures[J]. Nature Reviews Materials, 2018, 3(5): 52–68.
[42] He Q. Topological superconductivity and Majorana fermion[J]. ChineseScience Bulletin, 2018, 63(26): 2717–2730.
[43] He Y-P, Hong J-S, Liu X-J. Non-abelian statistics of Majorana modes and theapplications to topological quantum computation[J]. Acta Physica Sinica,2020, 69(11): 110302.
[44] Schuray A, Frombach D, Park S, Recher P. Transport signatures of Majoranabound states in superconducting hybrid structures: A minireview[J]. TheEuropean Physical Journal Special Topics, 2020, 229(4): 593–620.
[45] Kitaev A Y. Unpaired Majorana fermions in quantum wires[J].Physics-Uspekhi, 2001, 44(10S): 131–136.
[46] Lutchyn R M, Sau J D, Das Sarma S. Majorana Fermions and a TopologicalPhase Transition in Semiconductor-Superconductor Heterostructures[J].Physical Review Letters, 2010, 105(7): 077001.
[47] Oreg Y, Refael G, von Oppen F. Helical Liquids and Majorana Bound Statesin Quantum Wires[J]. Physical Review Letters, 2010, 105(17): 177002.
[48] Fu L, Kane C L. Superconducting Proximity Effect and Majorana Fermionsat the Surface of a Topological Insulator[J]. Physical Review Letters, 2008,100(9).
[49] Fu L, Kane C L. Josephson current and noise at a superconductor/quantum-spin-Hall-insulator/superconductor junction[J]. Physical Review B,2009, 79(16): 161408.
[50] Qi X-L, Hughes T L, Zhang S-C. Chiral topological superconductor from thequantum Hall state[J]. Physical Review B, 2010, 82(18): 184516.
[51] Chung S B, Qi X-L, Maciejko J, Zhang S-C. Conductance and noisesignatures of Majorana backscattering[J]. Physical Review B, 2011, 83(10):100512.
[52] Wang M-X, Liu C, Xu J-P, Yang F, Miao L, Yao M-Y, Gao C L, Shen C, MaX, Chen X, Xu Z-A, Liu Y, Zhang S-C, Qian D, Jia J-F, Xue Q-K. TheCoexistence of Superconductivity and Topological Order in the Bi2Se3 ThinFilms[J]. Science, 2012, 336(6077): 52–55.
[53] Xu J-P, Liu C, Wang M-X, Ge J, Liu Z-L, Yang X, Chen Y, Liu Y, Xu Z-A,Gao C-L, Qian D, Zhang F-C, Jia J-F. Artificial Topological Superconductorby the Proximity Effect[J]. Physical Review Letters, 2014, 112(21): 217001.
[54] Xu J-P, Wang M-X, Liu Z L, Ge J-F, Yang X, Liu C, Xu Z A, Guan D, Gao CL, Qian D, Liu Y, Wang Q-H, Zhang F-C, Xue Q-K, Jia J-F. ExperimentalDetection of a Majorana Mode in the core of a Magnetic Vortex inside aTopological Insulator-Superconductor Bi2Te3/NbSe2 Heterostructure[J].Physical Review Letters, 2015, 114(1): 017001.
[55] Yin J-X, Wu Z, Wang J-H, Ye Z-Y, Gong J, Hou X-Y, Shan L, Li A, LiangX-J, Wu X-X, Li J, Ting C-S, Wang Z-Q, Hu J-P, Hor P-H, Ding H, Pan S H.Observation of a robust zero-energy bound state in iron-basedsuperconductor Fe(Te,Se)[J]. Nature Physics, 2015, 11(7): 543–546.
[56] Wang Z, Zhang P, Xu G, Zeng L K, Miao H, Xu X, Qian T, Weng H, RichardP, Fedorov A V, Ding H, Dai X, Fang Z. Topological nature of theFeSe0.5Te0.5 superconductor[J]. Physical Review B, 2015, 92(11): 115119.
[57] Sun H-H, Zhang K-W, Hu L-H, Li C, Wang G-Y, Ma H-Y, Xu Z-A, Gao C-L,Guan D-D, Li Y-Y, Liu C, Qian D, Zhou Y, Fu L, Li S-C, Zhang F-C, Jia J-F.Majorana Zero Mode Detected with Spin Selective Andreev Reflection in theVortex of a Topological Superconductor[J]. Physical Review Letters, 2016,116(25): 257003.
[58] Xu G, Lian B, Tang P, Qi X-L, Zhang S-C. Topological Superconductivity onthe Surface of Fe-Based Superconductors[J]. Physical Review Letters, 2016,117(4): 047001.
[59] Yan Z, Bi R, Wang Z. Majorana Zero Modes Protected by a Hopf Invariant inTopologically Trivial Superconductors[J]. Physical Review Letters, 2017,118(14): 147003.
[60] Chan C, Zhang L, Poon T F J, He Y-P, Wang Y-Q, Liu X-J. Generic Theoryfor Majorana Zero Modes in 2D Superconductors[J]. Physical Review Letters,2017, 119(4): 047001.
[61] Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J,Gu G D, Ding H, Shin S. Observation of topological superconductivity on thesurface of an iron-based superconductor[J]. Science, 2018, 360(6385): 182–186.
[62] Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S,Schneeloch J, Zhong R, Gu G, Fu L, Ding H, Gao H-J. Evidence forMajorana bound states in an iron-based superconductor[J]. Science, 2018,362(6412): 333–335.
[63] Chen C, Liu Q, Zhang T Z, Li D, Shen P P, Dong X L, Zhao Z-X, Zhang T,Feng D L. Quantized Conductance of Majorana Zero Mode in the Vortex ofthe Topological Superconductor (Li0.84Fe0.16)OHFeSe[J]. Chinese PhysicsLetters, 2019, 36(5): 057403.
[64] Zheng H, Jia J-F. Topological superconductivity in a Bi2Te3/NbSe2heterostructure: A review[J]. Chinese Physics B, 2019, 28(6): 067403.
[65] Kong L, Zhu S, Papaj M, Chen H, Cao L, Isobe H, Xing Y, Liu W, Wang D,Fan P, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Gao H-J, Ding H.Half-integer level shift of vortex bound states in an iron-basedsuperconductor[J]. Nature Physics, 2019, 15(11): 1181–1187.
[66] Kwon H-J, Sengupta K, Yakovenko V M. Fractional ac Josephson effect in pandd-wave superconductors[J]. The European Physical Journal B -Condensed Matter, 2003, 37(3): 349–361.
[67] Kwon H-J, Yakovenko V M, Sengupta K. Fractional ac Josephson effect inunconventional superconductors[J]. Low Temperature Physics, 2004, 30(7):613–619.
[68] Law K T, Lee P A, Ng T K. Majorana Fermion Induced Resonant AndreevReflection[J]. Physical Review Letters, 2009, 103(23): 237001.
[69] Fu L. Electron Teleportation via Majorana Bound States in a MesoscopicSuperconductor[J]. Physical Review Letters, 2010, 104(5): 056402.
[70] Wang J, Zhou Q, Lian B, Zhang S-C. Chiral topological superconductor andhalf-integer conductance plateau from quantum anomalous Hall plateautransition[J]. Physical Review B, 2015, 92(6): 064520.
[71] van Heck B, Hassler F, Akhmerov A R, Beenakker C W J. Coulomb stabilityof the 4π-periodic Josephson effect of Majorana fermions[J]. PhysicalReview B, 2011, 84(18): 180502.
[72] Wiedenmann J, Bocquillon E, Deacon R S, Hartinger S, Herrmann O,Klapwijk T M, Maier L, Ames C, Brüne C, Gould C, Oiwa A, Ishibashi K,Tarucha S, Buhmann H, Molenkamp L W. 4π-periodic Josephsonsupercurrent in HgTe-based topological Josephson junctions[J]. NatureCommunications, 2016, 7(1): 10303.
[73] Murani A, Dassonneville B, Kasumov A, Basset J, Ferrier M, Deblock R,Guéron S, Bouchiat H. Microwave Signature of Topological Andreev levelCrossings in a Bismuth-based Josephson Junction[J]. Physical ReviewLetters, 2019, 122(7): 076802.
[74] Laroche D, Bouman D, van Woerkom D J, Proutski A, Murthy C, Pikulin D I,Nayak C, van Gulik R J J, Nygård J, Krogstrup P, Kouwenhoven L P, GeresdiA. Observation of the 4π-periodic Josephson effect in indium arsenidenanowires[J]. Nature Communications, 2019, 10(1): 245.
[75] Wu W-X, Feng Y, Bai Y-H, Jiang Y-Y, Gao Z-W, Li Y-Z, Luan J-L, ZhouH-A, Jiang W-J, Feng X, Zhang J-S, Zhang H, He K, Ma X-C, Xue Q-K,Wang Y-Y. Gate Tunable Supercurrent in Josephson Junctions Based onBi2Te3 Topological Insulator Thin Films[J]. Chinese Physics Letters, 2021,38(3): 037402.
[76] He Q L, Pan L, Stern A L, Burks E C, Che X, Yin G, Wang J, Lian B, Zhou Q,Choi E S, Murata K, Kou X, Chen Z, Nie T, Shao Q, Fan Y, Zhang S-C, LiuK, Xia J, Wang K L. Chiral Majorana fermion modes in a quantumanomalous Hall insulator–superconductor structure[J]. Science, 2017,357(6348): 294–299.
[77] Tewari S, Stanescu T D. Majorana fermions go for a ride[J]. Science, 2020,367(6473): 23–24.
[78] Wilczek F. Majorana returns[J]. Nature Physics, 2009, 5(9): 614–618.
[79] Castelvecchi D. Evidence of elusive Majorana particle dies-but computinghope lives on[J]. Nature, 2021, 591(7850): 354–355.
[80] Klitzing K V., Dorda G, Pepper M. New Method for High-AccuracyDetermination of the Fine-Structure Constant Based on Quantized HallResistance[J]. Physical Review Letters, 1980, 45(6): 494–497.
[81] Laughlin R B. Quantized Hall conductivity in two dimensions[J]. PhysicalReview B, 1981, 23(10): 5632–5633.
[82] Halperin B I. Quantized Hall conductance, current-carrying edge states, andthe existence of extended states in a two-dimensional disordered potential[J].Physical Review B, 1982, 25(4): 2185–2190.
[83] Thouless D J, Kohmoto M, Nightingale M P, den Nijs M. Quantized HallConductance in a Two-Dimensional Periodic Potential[J]. Physical ReviewLetters, 1982, 49(6): 405–408.
[84] Haldane F D M. Model for a Quantum Hall Effect without Landau Levels:Condensed-Matter Realization of the Parity Anomaly[J]. Physical ReviewLetters, 1988, 61(18): 2015–2018.
[85] Kane C L, Mele E J. Z2 Topological Order and the Quantum Spin HallEffect[J]. Physical Review Letters, 2005, 95(14): 146802.
[86] Kane C L, Mele E J. Quantum Spin Hall Effect in Graphene[J]. PhysicalReview Letters, 2005, 95(22): 226801.
[87] Rachel S, Ezawa M. Giant magnetoresistance and perfect spin filter insilicene, germanene, and stanene[J]. Physical Review B, 2014, 89(19):195303.
[88] Bernevig B A, Hughes T L, Zhang S-C. Quantum Spin Hall Effect andTopological Phase Transition in HgTe Quantum Wells[J]. Science, 2006,314(5806): 1757–1761.
[89] Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, QiX-L, Zhang S-C. Quantum Spin Hall Insulator State in HgTe QuantumWells[J]. Science, 2007, 318(5851): 766–770.
[90] Roth A, Brune C, Buhmann H, Molenkamp L W, Maciejko J, Qi X-L, ZhangS-C. Nonlocal Transport in the Quantum Spin Hall State[J]. Science, 2009,325(5938): 294–297.
[91] Liu C, Hughes T L, Qi X-L, Wang K, Zhang S-C. Quantum Spin Hall Effectin Inverted Type-II Semiconductors[J]. Physical Review Letters, 2008,100(23): 236601.
[92] Du L, Knez I, Sullivan G, Du R-R. Robust Helical Edge Transport in GatedInAs/GaSb Bilayers[J]. Physical Review Letters, 2015, 114(9): 096802.
[93] Du L, Li T, Lou W, Wu X, Liu X, Han Z, Zhang C, Sullivan G, Ikhlassi A,Chang K, Du R-R. Tuning Edge States in Strained-Layer InAs/GaInSbQuantum Spin Hall Insulators[J]. Physical Review Letters, 2017, 119(5):056803.
[94] Liu C-X, Qi X-L, Dai X, Fang Z, Zhang S-C. Quantum Anomalous HallEffect in Hg1-yMnyTe Quantum Wells[J]. Physical Review Letters, 2008,101(14).
[95] Yu R, Zhang W, Zhang H-J, Zhang S-C, Dai X, Fang Z. QuantizedAnomalous Hall Effect in Magnetic Topological Insulators[J]. Science, 2010,329(5987): 61–64.
[96] Chang C-Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P,Wang L-L, Ji Z-Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S-C, HeK, Wang Y, Lu L, Ma X-C, Xue Q-K. Experimental Observation of theQuantum Anomalous Hall Effect in a Magnetic Topological Insulator[J].Science, 2013, 340(6129): 167–170.
[97] Chang C-Z, Zhao W, Kim D Y, Zhang H, Assaf B A, Heiman D, Zhang S-C,Liu C, Chan M H W, Moodera J S. High-precision realization of robustquantum anomalous Hall state in a hard ferromagnetic topologicalinsulator[J]. Nature Materials, 2015, 14(5): 473–477.
[98] Chang C-Z, Zhao W, Kim D Y, Wei P, Jain J K, Liu C, Chan M H W,Moodera J S. Zero-Field Dissipationless Chiral Edge Transport and theNature of Dissipation in the Quantum Anomalous Hall State[J]. PhysicalReview Letters, 2015, 115(5): 057206.
[99] Feng Y, Feng X, Ou Y, Wang J, Liu C, Zhang L, Zhao D, Jiang G, Zhang S-C,He K, Ma X, Xue Q-K, Wang Y. Observation of the Zero Hall Plateau in aQuantum Anomalous Hall Insulator[J]. Physical Review Letters, 2015,115(12): 126801.
[100] Liu C-X, Zhang S-C, Qi X-L. The Quantum Anomalous Hall Effect: Theoryand Experiment[J]. Annual Review of Condensed Matter Physics, 2016, 7(1):301–321.
[101] Zhang J, Zhao B, Zhou T, Yang Z. Quantum anomalous Hall effect in realmaterials[J]. Chinese Physics B, 2016, 25(11): 117308.
[102] Zhang Y-T, Hou Z, Xie X C, Sun Q-F. Quantum perfect crossed Andreevreflection in top-gated quantum anomalous Hall insulator–superconductorjunctions[J]. Physical Review B, 2017, 95(24): 245433.
[103] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H, Zhang Y. Quantumanomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4[J].Science, 2020, 367(6480): 895–900.
[104] Jiang J, Xiao D, Wang F, Shin J-H, Andreoli D, Zhang J, Xiao R, Zhao Y-F,Kayyalha M, Zhang L, Wang K, Zang J, Liu C, Samarth N, Chan M H W,Chang C-Z. Concurrence of quantum anomalous Hall and topological Halleffects in magnetic topological insulator sandwich heterostructures[J]. NatureMaterials, 2020, 19(7): 732–737.
[105] Hu C, Ding L, Gordon K N, Ghosh B, Tien H-J, Li H, Linn A G, Lien S-W,Huang C-Y, Mackey S, Liu J, Reddy P V S, Singh B, Agarwal A, Bansil A,Song M, Li D, Xu S-Y, Lin H, Cao H, Chang T-R, Dessau D, Ni N.Realization of an intrinsic ferromagnetic topological state in MnBi8Te13[J].Science Advances, 2020, 6(30): eaba4275.
[106] Li H, Chen C-Z, Jiang H, Xie X C. Coexistence of Quantum Hall andQuantum Anomalous Hall Phases in Disordered MnBi2Te4[J]. PhysicalReview Letters, 2021, 127(23): 236402.
[107] Zhang W, Yu R, Zhang H-J, Dai X, Fang Z. First-principles studies of thethree-dimensional strong topological insulators Bi2Te3, Bi2Se3 and Sb2Te3[J].New Journal of Physics, 2010, 12(6): 065013.
[108] Benalcazar W A, Bernevig B A, Hughes T L. Electric multipole moments,topological multipole moment pumping, and chiral hinge states in crystallineinsulators[J]. Physical Review B, 2017, 96(24): 245115.
[109] Zhang S-B, Lu H-Z, Shen S-Q. Linear magnetoconductivity in an intrinsictopological Weyl semimetal[J]. New Journal of Physics, 2016, 18(5):053039.
[110] Lu H-Z, Zhang S-B, Shen S-Q. High-field magnetoconductivity oftopological semimetals with short-range potential[J]. Physical Review B,2015, 92(4): 045203.
[111] Wang Z, Gresch D, Soluyanov A A, Xie W, Kushwaha S, Dai X, Troyer M,Cava R J, Bernevig B A. MoTe2: A Type-II Weyl Topological Metal[J].Physical Review Letters, 2016, 117(5): 056805.
[112] Yuan X, Zhang C, Zhang Y, Yan Z, Lyu T, Zhang M, Li Z, Song C, Zhao M,Leng P, Ozerov M, Chen X, Wang N, Shi Y, Yan H, Xiu F. The discovery ofdynamic chiral anomaly in a Weyl semimetal NbAs[J]. NatureCommunications, 2020, 11(1): 1259.
[113] Sun Y, Li J, Zhao H, Wu M, Pan H. Magneto-Optical Transport Properties ofType-II Nodal Line Semimetals[J]. Materials, 2021, 14(11): 3035.
[114] Wu J, Liu J, Liu X-J. Topological Spin Texture in a Quantum AnomalousHall Insulator[J]. Physical Review Letters, 2014, 113(13): 136403.
[115] Zhou B, Lu H-Z, Chu R-L, Shen S-Q, Niu Q. Finite Size Effects on HelicalEdge States in a Quantum Spin-Hall System[J]. Physical Review Letters,2008, 101(24): 246807.
[116] Ren Y, Qiao Z, Niu Q. Topological phases in two-dimensional materials: areview[J]. Reports on Progress in Physics, 2016, 79(6): 066501.
[117] Ezawa M. Valley-Polarized Metals and Quantum Anomalous Hall Effect inSilicene[J]. Physical Review Letters, 2012, 109(5): 055502.
[118] Liu J, Hsieh T H, Wei P, Duan W, Moodera J, Fu L. Spin-filtered edge stateswith an electrically tunable gap in a two-dimensional topological crystallineinsulator[J]. Nature Materials, 2014, 13(2): 178–183.
[119] Qian X, Liu J, Fu L, Li J. Quantum spin Hall effect in two-dimensionaltransition metal dichalcogenides[J]. Science, 2014, 346(6215): 1344–1347.
[120] Yang S A, Pan H, Zhang F. Chirality-Dependent Hall Effect in WeylSemimetals[J]. Physical Review Letters, 2015, 115(15): 156603.
[121] Liu Q, Zhang X, Abdalla L B, Fazzio A, Zunger A. Switching a NormalInsulator into a Topological Insulator via Electric Field with Application toPhosphorene[J]. Nano Letters, 2015, 15(2): 1222–1228.
[122] Krueckl V, Richter K. Switching Spin and Charge between Edge States inTopological Insulator Constrictions[J]. Physical Review Letters, 2011, 107(8):086803.
[123] Molle A, Goldberger J, Houssa M, Xu Y, Zhang S-C, Akinwande D. Buckledtwo-dimensional Xene sheets[J]. Nature Materials, 2017, 16(2): 163–169.
[124] Kadykov A M, Teppe F, Consejo C, Viti L, Vitiello M S, Krishtopenko S S,Ruffenach S, Morozov S V, Marcinkiewicz M, Desrat W, Dyakonova N,Knap W, Gavrilenko V I, Mikhailov N N, Dvoretsky S A. Terahertz detectionof magnetic field-driven topological phase transition in HgTe-basedtransistors[J]. Applied Physics Letters, 2015, 107(15): 152101.
[125] Guan S, Yu Z-M, Liu Y, Liu G-B, Dong L, Lu Y, Yao Y, Yang S A. Artificialgravity field, astrophysical analogues, and topological phase transitions instrained topological semimetals[J]. npj Quantum Materials, 2017, 2(1): 23.
[126] Krishtopenko S S, Yahniuk I, But D B, Gavrilenko V I, Knap W, Teppe F.Pressure and temperature driven phase transitions in HgTe quantum wells[J].Physical Review B, 2016, 94(24): 245402.
[127] He J J, Ng T K, Lee P A, Law K T. Selective Equal-Spin Andreev ReflectionsInduced by Majorana Fermions[J]. Physical Review Letters, 2014, 112(3):037001.
[128] He J J, Wu J, Choy T-P, Liu X-J, Tanaka Y, Law K T. Correlated spin currentsgenerated by resonant-crossed Andreev reflections in topologicalsuperconductors[J]. Nature Communications, 2014, 5(1): 3232.
[129] Chen C-Z, He J J, Xu D-H, Law K T. Effects of domain walls in quantumanomalous Hall insulator/superconductor heterostructures[J]. PhysicalReview B, 2017, 96(4): 041118.
[130] Chen C-Z, He J J, Ali M N, Lee G-H, Fong K C, Law K T. AsymmetricJosephson effect in inversion symmetry breaking topological materials[J].Physical Review B, 2018, 98(7): 075430.
[131] Chen C-Z, He J J, Xu D-H, Law K T. Emergent Josephson current of N=1chiral topological superconductor in quantum anomalous Hall insulator/superconductor heterostructures[J]. Physical Review B, 2018, 98(16):165439.
[132] Kitaev A Y. Quantum computations: algorithms and error correction[J].Russian Mathematical Surveys, 1997, 52(6): 1191–1249.
[133] Alicea J, Oreg Y, Refael G, von Oppen F, Fisher M P A. Non-Abelianstatistics and topological quantum information processing in 1D wirenetworks[J]. Nature Physics, 2011, 7(5): 412–417.
[134] Stenger J P T, Hatridge M, Frolov S M, Pekker D. Braiding quantum circuitbased on the 4π Josephson effect[J]. Physical Review B, 2019, 99(3):035307.
[135] Lian B, Sun X-Q, Vaezi A, Qi X-L, Zhang S-C. Topological quantumcomputation based on chiral Majorana fermions[J]. Proceedings of theNational Academy of Sciences, 2018, 115(43): 10938–10942.
[136] Liu X, Li X, Deng D-L, Liu X-J, Das Sarma S. Majorana spintronics[J].Physical Review B, 2016, 94(1): 014511.
[137] Zhou Y-F, Hou Z, Zhang Y-T, Sun Q-F. Chiral Majorana fermion modesregulated by a scanning tunneling microscope tip[J]. Physical Review B,2018, 97(11): 115452.
[138] Zhou Y-F, Hou Z, Lv P, Xie X, Sun Q-F. Magnetic flux control of chiralMajorana edge modes in topological superconductor[J]. Science ChinaPhysics, Mechanics & Astronomy, 2018, 61(12): 127811.
[139] Zhou Y-F, Hou Z, Sun Q-F. Non-Abelian operation on chiral Majoranafermions by quantum dots[J]. Physical Review B, 2019, 99(19): 195137.
[140] Yan Q, Zhou Y-F, Sun Q-F. Electrically tunable chiral Majorana edge modesin quantum anomalous Hall insulator–topological superconductor systems[J].Physical Review B, 2019, 100(23): 235407.
[141] Yan Q, Sun Q-F. Realization of arbitrary two-qubit quantum gates based onchiral Majorana fermions[J]. Chinese Physics B, 2021, 30(4): 040303.
[142] Wang A-Q, Li C-Z, Li C, Liao Z-M, Brinkman A, Yu D-P. 4π-PeriodicSupercurrent from Surface States in Cd3As2 Nanowire-Based JosephsonJunctions[J]. Physical Review Letters, 2018, 121(23): 237701.
[143] Yang G, Lyu Z, Zhang X, Qu F, Lu L. Probing the minigap in topologicalinsulator-based Josephson junctions under radio frequency irradiation[J].Chinese Physics B, 2019, 28(12): 127402.
[144] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, KouwenhovenL P. Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices[J]. Science, 2012, 336(6084): 1003–1007.
[145] Beenakker C, Kouwenhoven L. A road to reality with topologicalsuperconductors[J]. Nature Physics, 2016, 12(7): 618–621.
[146] Prada E, San-Jose P, de Moor M W A, Geresdi A, Lee E J H, Klinovaja J,Loss D, Nygård J, Aguado R, Kouwenhoven L P. From Andreev to Majoranabound states in hybrid superconductor–semiconductor nanowires[J]. NatureReviews Physics, 2020, 2(10): 575–594.
[147] Huang Y, Setiawan F, Sau J D. Disorder-induced half-integer quantizedconductance plateau in quantum anomalous Hall insulator-superconductorstructures[J]. Physical Review B, 2018, 97(10): 100501.
[148] Ji W, Wen X-G. 1/2(e2/h) Conductance Plateau without 1D Chiral MajoranaFermions[J]. Physical Review Letters, 2018, 120(10): 107002.
[149] Lian B, Wang J, Sun X-Q, Vaezi A, Zhang S-C. Quantum phase transition ofchiral Majorana fermions in the presence of disorder[J]. Physical Review B,2018, 97(12): 125408.
[150] Kayyalha M, Xiao D, Zhang R, Shin J, Jiang J, Wang F, Zhao Y-F, Xiao R,Zhang L, Fijalkowski K M, Mandal P, Winnerlein M, Gould C, Li Q,Molenkamp L W, Chan M H W, Samarth N, Chang C-Z. Absence of evidencefor chiral Majorana modes in quantum anomalous Hall-superconductordevices[J]. Science, 2020, 367(6473): 64–67.
[151] Beenakker C W J, Pikulin D I, Hyart T, Schomerus H, Dahlhaus J P.Fermion-Parity Anomaly of the Critical Supercurrent in the QuantumSpin-Hall Effect[J]. Physical Review Letters, 2013, 110(1): 017003.
[152] Crépin F, Trauzettel B. Parity Measurement in Topological JosephsonJunctions[J]. Physical Review Letters, 2014, 112(7): 077002.
[153] Peng Y, Vinkler-Aviv Y, Brouwer P W, Glazman L I, von Oppen F. ParityAnomaly and Spin Transmutation in Quantum Spin Hall JosephsonJunctions[J]. Physical Review Letters, 2016, 117(26): 267001.
[154] Schrade C, Fu L. Parity-Controlled 2π Josephson Effect Mediated byMajorana Kramers Pairs[J]. Physical Review Letters, 2018, 120(26): 267002.
[155] Sumita S, Furusaki A. Superconductor/normal-metal/superconductor junctionof topological superconductors revisited: Fractional Josephson current,fermion parity, and oscillating wave functions[J]. Physical Review B, 2021,104(20): 205431.
[156] Ma M, Zyuzin A Y. Josephson Effect in the Quantum Hall Regime[J].Europhysics Letters (EPL), 1993, 21(9): 941–945.
[157] Sun Q-F, Li Y-X, Long W, Wang J. Quantum Andreev effect intwo-dimensional HgTe/CdTe quantum well/superconductor systems[J].Physical Review B, 2011, 83(11): 115315.
[158] Knez I, Du R-R, Sullivan G. Andreev Reflection of Helical Edge Modes inInAs/GaSb Quantum Spin Hall Insulator[J]. Physical Review Letters, 2012,109(18): 186603.
[159] Baxevanis B, Ostroukh V P, Beenakker C W J. Even-odd flux quanta effect inthe Fraunhofer oscillations of an edge-channel Josephson junction[J].Physical Review B, 2015, 91(4): 041409.
[160] Pribiag V S, Beukman A J A, Qu F, Cassidy M C, Charpentier C,Wegscheider W, Kouwenhoven L P. Edge-mode superconductivity in atwo-dimensional topological insulator[J]. Nature Nanotechnology, 2015,10(7): 593–597.
[161] Tkachov G, Burset P, Trauzettel B, Hankiewicz E M. Quantum interferenceof edge supercurrents in a two-dimensional topological insulator[J]. PhysicalReview B, 2015, 92(4): 045408.
[162] Ben Shalom M, Zhu M J, Fal’ko V I, Mishchenko A, Kretinin A V,Novoselov K S, Woods C R, Watanabe K, Taniguchi T, Geim A K, Prance J R.Quantum oscillations of the critical current and high-field superconductingproximity in ballistic graphene[J]. Nature Physics, 2016, 12(4): 318–322.
[163] Song J, Liu H, Liu J, Li Y-X, Joynt R, Sun Q, Xie X C. Quantum interferencein topological insulator Josephson junctions[J]. Physical Review B, 2016,93(19): 195302.
[164] Amet F, Ke C T, Borzenets I V, Wang J, Watanabe K, Taniguchi T, Deacon RS, Yamamoto M, Bomze Y, Tarucha S, Finkelstein G. Supercurrent in thequantum Hall regime[J]. Science, 2016, 352(6288): 966–969.
[165] Liu J, Liu H, Song J, Sun Q-F, Xie X C. Superconductor graphenesuperconductor Josephson junction in the quantum Hall regime[J]. PhysicalReview B, 2017, 96(4): 045401.
[166] Lennart Bours, Sothmann B, Carrega M, Strambini E, Hankiewicz E M,Molenkamp L W, Giazotto F. Topological SQUIPT Based on Helical EdgeStates in Proximity to Superconductors[J]. Physical Review Applied, 2018,10(1): 014027.
[167] Wei M, Zhou M, Zhang Y-T, Xing Y. From quantized local Andreevreflection to perfect crossed Andreev reflection in topological insulator–superconductor hybrid systems[J]. Physical Review B, 2020, 101(15):155408.
[168] Zhao L, Arnault E G, Bondarev A, Seredinski A, Larson T F Q, Draelos A W,Li H, Watanabe K, Taniguchi T, Amet F, Baranger H U, Finkelstein G.Interference of chiral Andreev edge states[J]. Nature Physics, 2020, 16(8):862–867.
[169] Szombati D B, Nadj-Perge S, Car D, Plissard S R, Bakkers E P A M,Kouwenhoven L P. Josephson φ0-junction in nanowire quantum dots[J].Nature Physics, 2016, 12(6): 568–572.
[170] Reynoso A A, Usaj G, Balseiro C A, Feinberg D, Avignon M. AnomalousJosephson Current in Junctions with Spin Polarizing Quantum PointContacts[J]. Physical Review Letters, 2008, 101(10): 107001.
[171] Buzdin A. Direct Coupling Between Magnetism and SuperconductingCurrent in the Josephson φ0 Junction[J]. Physical Review Letters, 2008,101(10): 107005.
[172] Zazunov A, Egger R, Jonckheere T, Martin T. Anomalous Josephson Currentthrough a Spin-Orbit Coupled Quantum Dot[J]. Physical Review Letters,2009, 103(14): 147004.
[173] Liu J-F, Chan K S. Relation between symmetry breaking and the anomalousJosephson effect[J]. Physical Review B, 2010, 82(12): 125305.
[174] Gingrich E C, Niedzielski B M, Glick J A, Wang Y, Miller D L, Loloee R,Pratt Jr W P, Birge N O. Controllable 0-π Josephson junctions containing aferromagnetic spin valve[J]. Nature Physics, 2016, 12(6): 564–567.
[175] Reynoso A A, Usaj G, Balseiro C A, Feinberg D, Avignon M.Spin-orbit-induced chirality of Andreev states in Josephson junctions[J].Physical Review B, 2012, 86(21): 214519.
[176] Padurariu C, Nazarov YU V. Theoretical proposal for superconducting spinqubits[J]. Physical Review B, 2010, 81(14): 144519.
[177] Mal’shukov A G. Long-range effect of a Zeeman field on the electric currentthrough the helical metal-superconductor interface in an Andreevinterferometer[J]. Physical Review B, 2018, 97(6): 064515.
[178] Shukrinov YU M, Rahmonov I R, Sengupta K. Ferromagnetic resonance andmagnetic precessions in φ0 junctions[J]. Physical Review B, 2019, 99(22):224513.
[179] Alidoust M. Critical supercurrent and φ0 state for probing a persistent spinhelix[J]. Physical Review B, 2020, 101(15): 155123.
[180] Alidoust M, Shen C, Žutić I. Cubic spin-orbit coupling and anomalousJosephson effect in planar junctions[J]. Physical Review B, 2021, 103(6):L060503.
[181] Braude V, Nazarov YU V. Fully Developed Triplet Proximity Effect[J].Physical Review Letters, 2007, 98(7): 077003.
[182] Liu J-F, Chan K S. Anomalous Josephson current through a ferromagnetictrilayer junction[J]. Physical Review B, 2010, 82(18): 184533.
[183] Liu J-F, Sum Chan K, Wang J. Anomalous Josephson Current through aFerromagnet-Semiconductor Hybrid Structure[J]. Journal of the PhysicalSociety of Japan, 2011, 80(12): 124708.
[184] Alidoust M, Willatzen M, Jauho A-P. Fraunhofer response and supercurrentspin switching in black phosphorus with strain and disorder[J]. PhysicalReview B, 2018, 98(18): 184505.
[185] Amin M H S, Omelyanchouk A N, Zagoskin A M. Mechanisms ofspontaneous current generation in an inhomogeneous d-wavesuperconductor[J]. Physical Review B, 2001, 63(21): 212502.
[186] Ashby P E C, Kallin C. Suppression of spontaneous supercurrents in a chiralp-wave superconductor[J]. Physical Review B, 2009, 79(22): 224509.
[187] Liu J-F. Anomalous Josephson Effect in Triplet Superconductor-Ferromagnet-Triplet Superconductor Junctions[J]. Journal of the PhysicalSociety of Japan, 2014, 83(2): 024712.
[188] Zhang H, Wang J, Liu J-F. Anomalous Josephson effect innoncentrosymmetric superconductors[J]. Applied Physics Letters, 2016,108(10): 102601.
[189] Liu J-F, Xu Y, Wang J. Identifying the chiral d-wave superconductivity byJosephson φ0-states[J]. Scientific Reports, 2017, 7(1): 43899.
[190] Tanaka Y, Yokoyama T, Nagaosa N. Manipulation of the Majorana Fermion,Andreev Reflection, and Josephson Current on Topological Insulators[J].Physical Review Letters, 2009, 103(10): 107002.
[191] Dolcini F, Houzet M, Meyer J S. Topological Josephson ϕ0 junctions[J].Physical Review B, 2015, 92(3): 035428.
[192] Wang J, Hao L, Liu J-F. Electric control of the Josephson current-phaserelation in a topological circuit[J]. Physical Review B, 2016, 93(15): 155405.
[193] Zyuzin A, Alidoust M, Loss D. Josephson junction through a disorderedtopological insulator with helical magnetization[J]. Physical Review B, 2016,93(21): 214502.
[194] Bobkova I V, Bobkov A M, Zyuzin A A, Alidoust M. Magnetoelectrics indisordered topological insulator Josephson junctions[J]. Physical Review B,2016, 94(13): 134506.
[195] Zhou X, Jin G. Silicene-based π and φ0 Josephson junctions[J]. PhysicalReview B, 2017, 95(19): 195419.
[196] Alidoust M, Hamzehpour H. Spontaneous supercurrent and φ0 phase shiftparallel to magnetized topological insulator interfaces[J]. Physical Review B,2017, 96(16): 165422.
[197] Alidoust M, Willatzen M, Jauho A-P. Strain-engineered Majorana zeroenergy modes and φ0 Josephson state in black phosphorus[J]. PhysicalReview B, 2018, 98(8): 085414.
[198] Alidoust M. Self-biased current, magnetic interference response, andsuperconducting vortices in tilted Weyl semimetals with disorder[J]. PhysicalReview B, 2018, 98(24): 245418.
[199] Fu P-H, Wang J, Liu J-F, Wang R-Q. Josephson signatures of Weyl nodecreation and annihilation in irradiated Dirac semimetals[J]. Physical ReviewB, 2019, 100(11): 115414.
[200] Alidoust M, Halterman K. Evolution of pair correlation symmetries andsupercurrent reversal in tilted Weyl semimetals[J]. Physical Review B, 2020,101(3): 035120.
[201] Kulikov K, Sinha D, Shukrinov YU M, Sengupta K. Josephson junctions ofWeyl and multi-Weyl semimetals[J]. Physical Review B, 2020, 101(7):075110.
[202] Sinha D. Josephson effect in type-I Weyl semimetals[J]. Physical Review B,2020, 102(8): 085144.
[203] Goldobin E, Koelle D, Kleiner R. Tunable ±φ, φ0, and φ0±φ Josephsonjunction[J]. Physical Review B, 2015, 91(21): 214511.
[204] Yokoyama T, Eto M, Nazarov Y V. Anomalous Josephson effect induced byspin-orbit interaction and Zeeman effect in semiconductor nanowires[J].Physical Review B, 2014, 89(19): 195407.
[205] Klam L, Epp A, Chen W, Sigrist M, Manske D. Josephson effect andtriplet-singlet ratio of noncentrosymmetric superconductors[J]. PhysicalReview B, 2014, 89(17): 174505.
[206] Tanaka Y, Sato M, Nagaosa N. Symmetry and Topology in SuperconductorsOdd-Frequency Pairing and Edge States[J]. Journal of the Physical Society ofJapan, 2012, 81(1): 011013.
[207] Wang C M, Sun H-P, Lu H-Z, Xie X C. 3D Quantum Hall Effect of FermiArcs in Topological Semimetals[J]. Physical Review Letters, 2017, 119(13):136806.
[208] Zhang C, Narayan A, Lu S, Zhang J, Zhang H, Ni Z, Yuan X, Liu Y, Park JH,Zhang E, Wang W, Liu S, Cheng L, Pi L, Sheng Z, Sanvito S, Xiu F.Evolution of Weyl orbit and quantum Hall effect in Dirac semimetalCd3As2[J]. Nature Communications, 2017, 8(1): 1272.
[209] Schumann T, Galletti L, Kealhofer D A, Kim H, Goyal M, Stemmer S.Observation of the Quantum Hall Effect in Confined Films of theThree-Dimensional Dirac Semimetal Cd3As2[J]. Physical Review Letters,2018, 120(1): 016801.
[210] Zhang C, Zhang Y, Yuan X, Lu S, Zhang J, Narayan A, Liu Y, Zhang H, Ni Z,Liu R, Choi E S, Suslov A, Sanvito S, Pi L, Lu H-Z, Potter A C, Xiu F.Quantum Hall effect based on Weyl orbits in Cd3As2[J]. Nature, 2019,565(7739): 331–336.
[211] Deng W, Huang X, Lu J, Peri V, Li F, Huber S D, Liu Z. Acoustic spin-Cherninsulator induced by synthetic spin–orbit coupling with spin conservationbreaking[J]. Nature Communications, 2020, 11(1): 3227.
[212] Yang Y, Qian X, Shi L, Shen X, Wang Y, Hang Z H. Observation and controlof pseudospin switching in a finite-width topological photonic crystal[J].Optics Express, 2022, 30(4): 5731.
[213] Lee D H, Joannopoulos J D. Simple scheme for surface-band calculations. II.The Green’s function[J]. Physical Review B, 1981, 23(10): 4997–5004.
[214] Büttiker M. Scattering theory of current and intensity noise correlations inconductors and wave guides[J]. Physical Review B, 1992, 46(19): 12485–12507.
[215] Datta S, van Houten H. Electronic Transport in Mesoscopic Systems[J].Physics Today, 1996, 49(5): 70–70.
[216] Li C-A, Li J, Shen S-Q. Majorana-Josephson interferometer[J]. PhysicalReview B, 2019, 99(10): 100504.
[217] Ikegaya S, Asano Y, Manske D. Anomalous Nonlocal Conductance as aFingerprint of Chiral Majorana Edge States[J]. Physical Review Letters,2019, 123(20): 207002.
[218] Qi X-L, Wu Y-S, Zhang S-C. Topological quantization of the spin Hall effectin two-dimensional paramagnetic semiconductors[J]. Physical Review B,2006, 74(8): 085308.
[219] Blonder G E, Tinkham M, Klapwijk T M. Transition from metallic totunneling regimes in superconducting microconstrictions: Excess current,charge imbalance, and supercurrent conversion[J]. Physical Review B, 1982,25(7): 4515–4532.
[220] Takane Y, Ebisawa H. Conductance Formula for Mesoscopic Systems with aSuperconducting Segment[J]. Journal of the Physical Society of Japan, 1992,61(5): 1685–1690.
[221] Anantram M P, Datta S. Current fluctuations in mesoscopic systems withAndreev scattering[J]. Physical Review B, 1996, 53(24): 16390–16402.
[222] Sun Q, Xie X C. Quantum transport through a graphene nanoribbon–superconductor junction[J]. Journal of Physics: Condensed Matter, 2009,21(34): 344204.
[223] Entin-Wohlman O, Imry Y, Aharony A. Conductance of superconductingnormalhybrid structures[J]. Physical Review B, 2008, 78(22): 224510.
[224] Beenakker C W J. Quantum transport in semiconductor- superconductormicrojunctions[J]. Physical Review B, 1992, 46(19): 12841–12844.
[225] Li J, Fleury G, Büttiker M. Scattering theory of chiral Majorana fermioninterferometry[J]. Physical Review B, 2012, 85(12): 125440.
[226] Yang K-Y, Lu Y-M, Ran Y. Quantum Hall effects in a Weyl semimetal:Possible application in pyrochlore iridates[J]. Physical Review B, 2011,84(7): 075129.

所在学位评定分委会
物理系
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符//www.snoollab.com/handle/2SGJ60CL/356269
专题理学院_物理系
推荐引用方式
GB/T 7714
徐勇. 基于拓扑边缘态输运性质的器件设计与研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849470-徐勇-物理系.pdf(3843KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[徐勇]的文章
百度学术
百度学术中相似的文章
[徐勇]的文章
必应学术
必应学术中相似的文章
[徐勇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map