[1] Hasan M Z, Kane C L. Colloquium: Topological insulators[J]. Reviews ofModern Physics, 2010, 82(4): 3045–3067.
[2] Qi X-L, Zhang S-C. Topological insulators and superconductors[J]. Reviewsof Modern Physics, 2011, 83(4): 1057–1110.
[3] Ando Y. Topological Insulator Materials[J]. Journal of the Physical Societyof Japan, 2013, 82(10): 102001.
[4] Zhang H, Liu C-X, Qi X-L, Dai X, Fang Z, Zhang S-C. Topologicalinsulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on thesurface[J]. Nature Physics, 2009, 5(6): 438–442.
[5] Xu G, Weng H, Wang Z, Dai X, Fang Z. Chern Semimetal and the QuantizedAnomalous Hall Effect in HgCr2Se4[J]. Physical Review Letters, 2011,107(18): 186806.
[6] Hasan M Z, Xu S-Y, Belopolski I, Huang S-M. Discovery of Weyl FermionSemimetals and Topological Fermi Arc States[J]. Annual Review ofCondensed Matter Physics, 2017, 8(1): 289–309.
[7] Yan B, Felser C. Topological Materials: Weyl Semimetals[J]. Annual Reviewof Condensed Matter Physics, 2017, 8(1): 337–354.
[8] Li S, Yu Z-M, Yao Y, Yang S A. Type-II topological metals[J]. Frontiers ofPhysics, 2020, 15(4): 43201.
[9] Huang S-M, Xu S-Y, Belopolski I, Lee C-C, Chang G, Chang T-R, Wang B,Alidoust N, Bian G, Neupane M, Sanchez D, Zheng H, Jeng H-T, Bansil A,Neupert T, Lin H, Hasan M Z. New type of Weyl semimetal with quadraticdouble Weyl fermions[J]. Proceedings of the National Academy of Sciences,2016, 113(5): 1180–1185.
[10] Katsnelson M I, Novoselov K S, Geim A K. Chiral tunnelling and the Kleinparadox in graphene[J]. Nature Physics, 2006, 2(9): 620–625.
[11] Liang T, Gibson Q, Ali M N, Liu M, Cava R J, Ong N P. Ultrahigh mobilityand giant magnetoresistance in the Dirac semimetal Cd3As2[J]. NatureMaterials, 2015, 14(3): 280–284.
[12] Armitage N P, Mele E J, Vishwanath A. Weyl and Dirac semimetals inthree-dimensional solids[J]. Reviews of Modern Physics, 2018, 90(1):015001.
[13] Xie B, Wang H-X, Zhang X, Zhan P, Jiang J-H, Lu M, Chen Y. Higher-orderband topology[J]. Nature Reviews Physics, 2021, 3(7): 520–532.
[14] Wei Q, Zhang X, Deng W, Lu J, Huang X, Yan M, Chen G, Liu Z, Jia S.Higher-order topological semimetal in acoustic crystals[J]. Nature Materials,2021, 20(6): 812–817.
[15] Ghorashi S A A, Li T, Hughes T L. Higher-Order Weyl Semimetals[J].Physical Review Letters, 2020, 125(26): 266804.
[16] Wang H-X, Lin Z-K, Jiang B, Guo G-Y, Jiang J-H. Higher-Order WeylSemimetals[J]. Physical Review Letters, 2020, 125(14): 146401.
[17] Luo L, Wang H-X, Lin Z-K, Jiang B, Wu Y, Li F, Jiang J-H. Observation of aphononic higher-order Weyl semimetal[J]. Nature Materials, 2021, 20(6):794–799.
[18] Benalcazar W A, Bernevig B A, Hughes T L. Quantized electric multipoleinsulators[J]. Science, 2017, 357(6346): 61–66.
[19] Lin M, Hughes T L. Topological quadrupolar semimetals[J]. Physical ReviewB, 2018, 98(24): 241103.
[20] Haldane F D M. Nobel Lecture: Topological quantum matter[J]. Reviews ofModern Physics, 2017, 89(4): 040502.
[21] Lv B Q, Qian T, Ding H. Experimental perspective on three-dimensionaltopological semimetals[J]. Reviews of Modern Physics, 2021, 93(2): 025002.
[22] Wray L A. Topological transistor[J]. Nature Physics, 2012, 8(10): 705–706.
[23] Ezawa M. Quantized conductance and field-effect topological quantumtransistor in silicene nanoribbons[J]. Applied Physics Letters, 2013, 102(17):172103.
[24] König M, Buhmann H, W. Molenkamp L, Hughes T, Liu C-X, Qi X-L, ZhangS-C. The Quantum Spin Hall Effect: Theory and Experiment[J]. Journal ofthe Physical Society of Japan, 2008, 77(3): 031007.
[25] Yang Y, Xu Z, Sheng L, Wang B, Xing D Y, Sheng D N.Time-Reversal-Symmetry-Broken Quantum Spin Hall Effect[J]. PhysicalReview Letters, 2011, 107(6): 066602.
[26] Niu Q, Thouless D J, Wu Y-S. Quantized Hall conductance as a topologicalinvariant[J]. Physical Review B, 1985, 31(6): 3372–3377.
[27] Otrokov M M, Menshchikova T V, Vergniory M G, Rusinov I P, YuVyazovskaya A, Koroteev Y M, Bihlmayer G, Ernst A, Echenique P M,Arnau A, Chulkov E V. Highly-ordered wide bandgap materials for quantizedanomalous Hall and magnetoelectric effects[J]. 2D Materials, 2017, 4(2):025082.
[28] Ge J, Liu Y, Li J, Li H, Luo T, Wu Y, Xu Y, Wang J. High-Chern-number andhigh-temperature quantum Hall effect without Landau levels[J]. NationalScience Review, 2020, 7(8): 1280–1287.
[29] 何珂. 从磁性掺杂拓扑绝缘体到内禀磁性拓扑绝缘体-通往高温量子反常霍尔效应之路[J]. 物理, 2020, 49(12): 828.
[30] Culcer D, Keser A C, Li Y, Tkachov G. Transport in two-dimensionaltopological materials: recent developments in experiment and theory[J]. 2DMaterials, 2020, 7(2): 022007.
[31] Chen C-Z, Jiang H, Xu D-H, Xie X C. Emergent Z2 topological invariant androbust helical edge states in two-dimensional topological metals[J]. ScienceChina Physics, Mechanics & Astronomy, 2020, 63(10): 107811.
[32] He K. Raise quantum anomalous Hall states up[J]. National Science Review,2021, 8(1): nwaa214.
[33] Ji H-R, Liu Y-Z, Wang H, Luo J-W, Li J-H, Li H, Wu Y, Xu Y, Wang J.Detection of Magnetic Gap in Topological Surface States of MnBi2Te4[J].Chinese Physics Letters, 2021, 38(10): 107404.
[34] Freedman M, Kitaev A, Larsen M, Wang Z. Topological quantumcomputation[J]. Bulletin of the American Mathematical Society, 2002, 40(1):31–38.
[35] Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S. Non-Abeliananyons and topological quantum computation[J]. Reviews of Modern Physics,2008, 80(3): 1083–1159.
[36] Alicea J. New directions in the pursuit of Majorana fermions in solid statesystems[J]. Reports on Progress in Physics, 2012, 75(7): 076501.
[37] Beenakker C W J. Search for Majorana Fermions in Superconductors[J].Annual Review of Condensed Matter Physics, 2013, 4(1): 113–136.
[38] Elliott S R, Franz M. Colloquium: Majorana fermions in nuclear, particle,and solid-state physics[J]. Reviews of Modern Physics, 2015, 87(1): 137–163.
[39] Sarma S D, Freedman M, Nayak C. Majorana zero modes and topologicalquantum computation[J]. npj Quantum Information, 2015, 1(1): 15001.
[40] Lahtinen V, Pachos J. A Short Introduction to Topological QuantumComputation[J]. SciPost Physics, 2017, 3(3): 021.
[41] Lutchyn R M, Bakkers E P A M, Kouwenhoven L P, Krogstrup P, Marcus CM, Oreg Y. Majorana zero modes in superconductor–semiconductorheterostructures[J]. Nature Reviews Materials, 2018, 3(5): 52–68.
[42] He Q. Topological superconductivity and Majorana fermion[J]. ChineseScience Bulletin, 2018, 63(26): 2717–2730.
[43] He Y-P, Hong J-S, Liu X-J. Non-abelian statistics of Majorana modes and theapplications to topological quantum computation[J]. Acta Physica Sinica,2020, 69(11): 110302.
[44] Schuray A, Frombach D, Park S, Recher P. Transport signatures of Majoranabound states in superconducting hybrid structures: A minireview[J]. TheEuropean Physical Journal Special Topics, 2020, 229(4): 593–620.
[45] Kitaev A Y. Unpaired Majorana fermions in quantum wires[J].Physics-Uspekhi, 2001, 44(10S): 131–136.
[46] Lutchyn R M, Sau J D, Das Sarma S. Majorana Fermions and a TopologicalPhase Transition in Semiconductor-Superconductor Heterostructures[J].Physical Review Letters, 2010, 105(7): 077001.
[47] Oreg Y, Refael G, von Oppen F. Helical Liquids and Majorana Bound Statesin Quantum Wires[J]. Physical Review Letters, 2010, 105(17): 177002.
[48] Fu L, Kane C L. Superconducting Proximity Effect and Majorana Fermionsat the Surface of a Topological Insulator[J]. Physical Review Letters, 2008,100(9).
[49] Fu L, Kane C L. Josephson current and noise at a superconductor/quantum-spin-Hall-insulator/superconductor junction[J]. Physical Review B,2009, 79(16): 161408.
[50] Qi X-L, Hughes T L, Zhang S-C. Chiral topological superconductor from thequantum Hall state[J]. Physical Review B, 2010, 82(18): 184516.
[51] Chung S B, Qi X-L, Maciejko J, Zhang S-C. Conductance and noisesignatures of Majorana backscattering[J]. Physical Review B, 2011, 83(10):100512.
[52] Wang M-X, Liu C, Xu J-P, Yang F, Miao L, Yao M-Y, Gao C L, Shen C, MaX, Chen X, Xu Z-A, Liu Y, Zhang S-C, Qian D, Jia J-F, Xue Q-K. TheCoexistence of Superconductivity and Topological Order in the Bi2Se3 ThinFilms[J]. Science, 2012, 336(6077): 52–55.
[53] Xu J-P, Liu C, Wang M-X, Ge J, Liu Z-L, Yang X, Chen Y, Liu Y, Xu Z-A,Gao C-L, Qian D, Zhang F-C, Jia J-F. Artificial Topological Superconductorby the Proximity Effect[J]. Physical Review Letters, 2014, 112(21): 217001.
[54] Xu J-P, Wang M-X, Liu Z L, Ge J-F, Yang X, Liu C, Xu Z A, Guan D, Gao CL, Qian D, Liu Y, Wang Q-H, Zhang F-C, Xue Q-K, Jia J-F. ExperimentalDetection of a Majorana Mode in the core of a Magnetic Vortex inside aTopological Insulator-Superconductor Bi2Te3/NbSe2 Heterostructure[J].Physical Review Letters, 2015, 114(1): 017001.
[55] Yin J-X, Wu Z, Wang J-H, Ye Z-Y, Gong J, Hou X-Y, Shan L, Li A, LiangX-J, Wu X-X, Li J, Ting C-S, Wang Z-Q, Hu J-P, Hor P-H, Ding H, Pan S H.Observation of a robust zero-energy bound state in iron-basedsuperconductor Fe(Te,Se)[J]. Nature Physics, 2015, 11(7): 543–546.
[56] Wang Z, Zhang P, Xu G, Zeng L K, Miao H, Xu X, Qian T, Weng H, RichardP, Fedorov A V, Ding H, Dai X, Fang Z. Topological nature of theFeSe0.5Te0.5 superconductor[J]. Physical Review B, 2015, 92(11): 115119.
[57] Sun H-H, Zhang K-W, Hu L-H, Li C, Wang G-Y, Ma H-Y, Xu Z-A, Gao C-L,Guan D-D, Li Y-Y, Liu C, Qian D, Zhou Y, Fu L, Li S-C, Zhang F-C, Jia J-F.Majorana Zero Mode Detected with Spin Selective Andreev Reflection in theVortex of a Topological Superconductor[J]. Physical Review Letters, 2016,116(25): 257003.
[58] Xu G, Lian B, Tang P, Qi X-L, Zhang S-C. Topological Superconductivity onthe Surface of Fe-Based Superconductors[J]. Physical Review Letters, 2016,117(4): 047001.
[59] Yan Z, Bi R, Wang Z. Majorana Zero Modes Protected by a Hopf Invariant inTopologically Trivial Superconductors[J]. Physical Review Letters, 2017,118(14): 147003.
[60] Chan C, Zhang L, Poon T F J, He Y-P, Wang Y-Q, Liu X-J. Generic Theoryfor Majorana Zero Modes in 2D Superconductors[J]. Physical Review Letters,2017, 119(4): 047001.
[61] Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J,Gu G D, Ding H, Shin S. Observation of topological superconductivity on thesurface of an iron-based superconductor[J]. Science, 2018, 360(6385): 182–186.
[62] Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S,Schneeloch J, Zhong R, Gu G, Fu L, Ding H, Gao H-J. Evidence forMajorana bound states in an iron-based superconductor[J]. Science, 2018,362(6412): 333–335.
[63] Chen C, Liu Q, Zhang T Z, Li D, Shen P P, Dong X L, Zhao Z-X, Zhang T,Feng D L. Quantized Conductance of Majorana Zero Mode in the Vortex ofthe Topological Superconductor (Li0.84Fe0.16)OHFeSe[J]. Chinese PhysicsLetters, 2019, 36(5): 057403.
[64] Zheng H, Jia J-F. Topological superconductivity in a Bi2Te3/NbSe2heterostructure: A review[J]. Chinese Physics B, 2019, 28(6): 067403.
[65] Kong L, Zhu S, Papaj M, Chen H, Cao L, Isobe H, Xing Y, Liu W, Wang D,Fan P, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Gao H-J, Ding H.Half-integer level shift of vortex bound states in an iron-basedsuperconductor[J]. Nature Physics, 2019, 15(11): 1181–1187.
[66] Kwon H-J, Sengupta K, Yakovenko V M. Fractional ac Josephson effect in pandd-wave superconductors[J]. The European Physical Journal B -Condensed Matter, 2003, 37(3): 349–361.
[67] Kwon H-J, Yakovenko V M, Sengupta K. Fractional ac Josephson effect inunconventional superconductors[J]. Low Temperature Physics, 2004, 30(7):613–619.
[68] Law K T, Lee P A, Ng T K. Majorana Fermion Induced Resonant AndreevReflection[J]. Physical Review Letters, 2009, 103(23): 237001.
[69] Fu L. Electron Teleportation via Majorana Bound States in a MesoscopicSuperconductor[J]. Physical Review Letters, 2010, 104(5): 056402.
[70] Wang J, Zhou Q, Lian B, Zhang S-C. Chiral topological superconductor andhalf-integer conductance plateau from quantum anomalous Hall plateautransition[J]. Physical Review B, 2015, 92(6): 064520.
[71] van Heck B, Hassler F, Akhmerov A R, Beenakker C W J. Coulomb stabilityof the 4π-periodic Josephson effect of Majorana fermions[J]. PhysicalReview B, 2011, 84(18): 180502.
[72] Wiedenmann J, Bocquillon E, Deacon R S, Hartinger S, Herrmann O,Klapwijk T M, Maier L, Ames C, Brüne C, Gould C, Oiwa A, Ishibashi K,Tarucha S, Buhmann H, Molenkamp L W. 4π-periodic Josephsonsupercurrent in HgTe-based topological Josephson junctions[J]. NatureCommunications, 2016, 7(1): 10303.
[73] Murani A, Dassonneville B, Kasumov A, Basset J, Ferrier M, Deblock R,Guéron S, Bouchiat H. Microwave Signature of Topological Andreev levelCrossings in a Bismuth-based Josephson Junction[J]. Physical ReviewLetters, 2019, 122(7): 076802.
[74] Laroche D, Bouman D, van Woerkom D J, Proutski A, Murthy C, Pikulin D I,Nayak C, van Gulik R J J, Nygård J, Krogstrup P, Kouwenhoven L P, GeresdiA. Observation of the 4π-periodic Josephson effect in indium arsenidenanowires[J]. Nature Communications, 2019, 10(1): 245.
[75] Wu W-X, Feng Y, Bai Y-H, Jiang Y-Y, Gao Z-W, Li Y-Z, Luan J-L, ZhouH-A, Jiang W-J, Feng X, Zhang J-S, Zhang H, He K, Ma X-C, Xue Q-K,Wang Y-Y. Gate Tunable Supercurrent in Josephson Junctions Based onBi2Te3 Topological Insulator Thin Films[J]. Chinese Physics Letters, 2021,38(3): 037402.
[76] He Q L, Pan L, Stern A L, Burks E C, Che X, Yin G, Wang J, Lian B, Zhou Q,Choi E S, Murata K, Kou X, Chen Z, Nie T, Shao Q, Fan Y, Zhang S-C, LiuK, Xia J, Wang K L. Chiral Majorana fermion modes in a quantumanomalous Hall insulator–superconductor structure[J]. Science, 2017,357(6348): 294–299.
[77] Tewari S, Stanescu T D. Majorana fermions go for a ride[J]. Science, 2020,367(6473): 23–24.
[78] Wilczek F. Majorana returns[J]. Nature Physics, 2009, 5(9): 614–618.
[79] Castelvecchi D. Evidence of elusive Majorana particle dies-but computinghope lives on[J]. Nature, 2021, 591(7850): 354–355.
[80] Klitzing K V., Dorda G, Pepper M. New Method for High-AccuracyDetermination of the Fine-Structure Constant Based on Quantized HallResistance[J]. Physical Review Letters, 1980, 45(6): 494–497.
[81] Laughlin R B. Quantized Hall conductivity in two dimensions[J]. PhysicalReview B, 1981, 23(10): 5632–5633.
[82] Halperin B I. Quantized Hall conductance, current-carrying edge states, andthe existence of extended states in a two-dimensional disordered potential[J].Physical Review B, 1982, 25(4): 2185–2190.
[83] Thouless D J, Kohmoto M, Nightingale M P, den Nijs M. Quantized HallConductance in a Two-Dimensional Periodic Potential[J]. Physical ReviewLetters, 1982, 49(6): 405–408.
[84] Haldane F D M. Model for a Quantum Hall Effect without Landau Levels:Condensed-Matter Realization of the Parity Anomaly[J]. Physical ReviewLetters, 1988, 61(18): 2015–2018.
[85] Kane C L, Mele E J. Z2 Topological Order and the Quantum Spin HallEffect[J]. Physical Review Letters, 2005, 95(14): 146802.
[86] Kane C L, Mele E J. Quantum Spin Hall Effect in Graphene[J]. PhysicalReview Letters, 2005, 95(22): 226801.
[87] Rachel S, Ezawa M. Giant magnetoresistance and perfect spin filter insilicene, germanene, and stanene[J]. Physical Review B, 2014, 89(19):195303.
[88] Bernevig B A, Hughes T L, Zhang S-C. Quantum Spin Hall Effect andTopological Phase Transition in HgTe Quantum Wells[J]. Science, 2006,314(5806): 1757–1761.
[89] Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, QiX-L, Zhang S-C. Quantum Spin Hall Insulator State in HgTe QuantumWells[J]. Science, 2007, 318(5851): 766–770.
[90] Roth A, Brune C, Buhmann H, Molenkamp L W, Maciejko J, Qi X-L, ZhangS-C. Nonlocal Transport in the Quantum Spin Hall State[J]. Science, 2009,325(5938): 294–297.
[91] Liu C, Hughes T L, Qi X-L, Wang K, Zhang S-C. Quantum Spin Hall Effectin Inverted Type-II Semiconductors[J]. Physical Review Letters, 2008,100(23): 236601.
[92] Du L, Knez I, Sullivan G, Du R-R. Robust Helical Edge Transport in GatedInAs/GaSb Bilayers[J]. Physical Review Letters, 2015, 114(9): 096802.
[93] Du L, Li T, Lou W, Wu X, Liu X, Han Z, Zhang C, Sullivan G, Ikhlassi A,Chang K, Du R-R. Tuning Edge States in Strained-Layer InAs/GaInSbQuantum Spin Hall Insulators[J]. Physical Review Letters, 2017, 119(5):056803.
[94] Liu C-X, Qi X-L, Dai X, Fang Z, Zhang S-C. Quantum Anomalous HallEffect in Hg1-yMnyTe Quantum Wells[J]. Physical Review Letters, 2008,101(14).
[95] Yu R, Zhang W, Zhang H-J, Zhang S-C, Dai X, Fang Z. QuantizedAnomalous Hall Effect in Magnetic Topological Insulators[J]. Science, 2010,329(5987): 61–64.
[96] Chang C-Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P,Wang L-L, Ji Z-Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S-C, HeK, Wang Y, Lu L, Ma X-C, Xue Q-K. Experimental Observation of theQuantum Anomalous Hall Effect in a Magnetic Topological Insulator[J].Science, 2013, 340(6129): 167–170.
[97] Chang C-Z, Zhao W, Kim D Y, Zhang H, Assaf B A, Heiman D, Zhang S-C,Liu C, Chan M H W, Moodera J S. High-precision realization of robustquantum anomalous Hall state in a hard ferromagnetic topologicalinsulator[J]. Nature Materials, 2015, 14(5): 473–477.
[98] Chang C-Z, Zhao W, Kim D Y, Wei P, Jain J K, Liu C, Chan M H W,Moodera J S. Zero-Field Dissipationless Chiral Edge Transport and theNature of Dissipation in the Quantum Anomalous Hall State[J]. PhysicalReview Letters, 2015, 115(5): 057206.
[99] Feng Y, Feng X, Ou Y, Wang J, Liu C, Zhang L, Zhao D, Jiang G, Zhang S-C,He K, Ma X, Xue Q-K, Wang Y. Observation of the Zero Hall Plateau in aQuantum Anomalous Hall Insulator[J]. Physical Review Letters, 2015,115(12): 126801.
[100] Liu C-X, Zhang S-C, Qi X-L. The Quantum Anomalous Hall Effect: Theoryand Experiment[J]. Annual Review of Condensed Matter Physics, 2016, 7(1):301–321.
[101] Zhang J, Zhao B, Zhou T, Yang Z. Quantum anomalous Hall effect in realmaterials[J]. Chinese Physics B, 2016, 25(11): 117308.
[102] Zhang Y-T, Hou Z, Xie X C, Sun Q-F. Quantum perfect crossed Andreevreflection in top-gated quantum anomalous Hall insulator–superconductorjunctions[J]. Physical Review B, 2017, 95(24): 245433.
[103] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H, Zhang Y. Quantumanomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4[J].Science, 2020, 367(6480): 895–900.
[104] Jiang J, Xiao D, Wang F, Shin J-H, Andreoli D, Zhang J, Xiao R, Zhao Y-F,Kayyalha M, Zhang L, Wang K, Zang J, Liu C, Samarth N, Chan M H W,Chang C-Z. Concurrence of quantum anomalous Hall and topological Halleffects in magnetic topological insulator sandwich heterostructures[J]. NatureMaterials, 2020, 19(7): 732–737.
[105] Hu C, Ding L, Gordon K N, Ghosh B, Tien H-J, Li H, Linn A G, Lien S-W,Huang C-Y, Mackey S, Liu J, Reddy P V S, Singh B, Agarwal A, Bansil A,Song M, Li D, Xu S-Y, Lin H, Cao H, Chang T-R, Dessau D, Ni N.Realization of an intrinsic ferromagnetic topological state in MnBi8Te13[J].Science Advances, 2020, 6(30): eaba4275.
[106] Li H, Chen C-Z, Jiang H, Xie X C. Coexistence of Quantum Hall andQuantum Anomalous Hall Phases in Disordered MnBi2Te4[J]. PhysicalReview Letters, 2021, 127(23): 236402.
[107] Zhang W, Yu R, Zhang H-J, Dai X, Fang Z. First-principles studies of thethree-dimensional strong topological insulators Bi2Te3, Bi2Se3 and Sb2Te3[J].New Journal of Physics, 2010, 12(6): 065013.
[108] Benalcazar W A, Bernevig B A, Hughes T L. Electric multipole moments,topological multipole moment pumping, and chiral hinge states in crystallineinsulators[J]. Physical Review B, 2017, 96(24): 245115.
[109] Zhang S-B, Lu H-Z, Shen S-Q. Linear magnetoconductivity in an intrinsictopological Weyl semimetal[J]. New Journal of Physics, 2016, 18(5):053039.
[110] Lu H-Z, Zhang S-B, Shen S-Q. High-field magnetoconductivity oftopological semimetals with short-range potential[J]. Physical Review B,2015, 92(4): 045203.
[111] Wang Z, Gresch D, Soluyanov A A, Xie W, Kushwaha S, Dai X, Troyer M,Cava R J, Bernevig B A. MoTe2: A Type-II Weyl Topological Metal[J].Physical Review Letters, 2016, 117(5): 056805.
[112] Yuan X, Zhang C, Zhang Y, Yan Z, Lyu T, Zhang M, Li Z, Song C, Zhao M,Leng P, Ozerov M, Chen X, Wang N, Shi Y, Yan H, Xiu F. The discovery ofdynamic chiral anomaly in a Weyl semimetal NbAs[J]. NatureCommunications, 2020, 11(1): 1259.
[113] Sun Y, Li J, Zhao H, Wu M, Pan H. Magneto-Optical Transport Properties ofType-II Nodal Line Semimetals[J]. Materials, 2021, 14(11): 3035.
[114] Wu J, Liu J, Liu X-J. Topological Spin Texture in a Quantum AnomalousHall Insulator[J]. Physical Review Letters, 2014, 113(13): 136403.
[115] Zhou B, Lu H-Z, Chu R-L, Shen S-Q, Niu Q. Finite Size Effects on HelicalEdge States in a Quantum Spin-Hall System[J]. Physical Review Letters,2008, 101(24): 246807.
[116] Ren Y, Qiao Z, Niu Q. Topological phases in two-dimensional materials: areview[J]. Reports on Progress in Physics, 2016, 79(6): 066501.
[117] Ezawa M. Valley-Polarized Metals and Quantum Anomalous Hall Effect inSilicene[J]. Physical Review Letters, 2012, 109(5): 055502.
[118] Liu J, Hsieh T H, Wei P, Duan W, Moodera J, Fu L. Spin-filtered edge stateswith an electrically tunable gap in a two-dimensional topological crystallineinsulator[J]. Nature Materials, 2014, 13(2): 178–183.
[119] Qian X, Liu J, Fu L, Li J. Quantum spin Hall effect in two-dimensionaltransition metal dichalcogenides[J]. Science, 2014, 346(6215): 1344–1347.
[120] Yang S A, Pan H, Zhang F. Chirality-Dependent Hall Effect in WeylSemimetals[J]. Physical Review Letters, 2015, 115(15): 156603.
[121] Liu Q, Zhang X, Abdalla L B, Fazzio A, Zunger A. Switching a NormalInsulator into a Topological Insulator via Electric Field with Application toPhosphorene[J]. Nano Letters, 2015, 15(2): 1222–1228.
[122] Krueckl V, Richter K. Switching Spin and Charge between Edge States inTopological Insulator Constrictions[J]. Physical Review Letters, 2011, 107(8):086803.
[123] Molle A, Goldberger J, Houssa M, Xu Y, Zhang S-C, Akinwande D. Buckledtwo-dimensional Xene sheets[J]. Nature Materials, 2017, 16(2): 163–169.
[124] Kadykov A M, Teppe F, Consejo C, Viti L, Vitiello M S, Krishtopenko S S,Ruffenach S, Morozov S V, Marcinkiewicz M, Desrat W, Dyakonova N,Knap W, Gavrilenko V I, Mikhailov N N, Dvoretsky S A. Terahertz detectionof magnetic field-driven topological phase transition in HgTe-basedtransistors[J]. Applied Physics Letters, 2015, 107(15): 152101.
[125] Guan S, Yu Z-M, Liu Y, Liu G-B, Dong L, Lu Y, Yao Y, Yang S A. Artificialgravity field, astrophysical analogues, and topological phase transitions instrained topological semimetals[J]. npj Quantum Materials, 2017, 2(1): 23.
[126] Krishtopenko S S, Yahniuk I, But D B, Gavrilenko V I, Knap W, Teppe F.Pressure and temperature driven phase transitions in HgTe quantum wells[J].Physical Review B, 2016, 94(24): 245402.
[127] He J J, Ng T K, Lee P A, Law K T. Selective Equal-Spin Andreev ReflectionsInduced by Majorana Fermions[J]. Physical Review Letters, 2014, 112(3):037001.
[128] He J J, Wu J, Choy T-P, Liu X-J, Tanaka Y, Law K T. Correlated spin currentsgenerated by resonant-crossed Andreev reflections in topologicalsuperconductors[J]. Nature Communications, 2014, 5(1): 3232.
[129] Chen C-Z, He J J, Xu D-H, Law K T. Effects of domain walls in quantumanomalous Hall insulator/superconductor heterostructures[J]. PhysicalReview B, 2017, 96(4): 041118.
[130] Chen C-Z, He J J, Ali M N, Lee G-H, Fong K C, Law K T. AsymmetricJosephson effect in inversion symmetry breaking topological materials[J].Physical Review B, 2018, 98(7): 075430.
[131] Chen C-Z, He J J, Xu D-H, Law K T. Emergent Josephson current of N=1chiral topological superconductor in quantum anomalous Hall insulator/superconductor heterostructures[J]. Physical Review B, 2018, 98(16):165439.
[132] Kitaev A Y. Quantum computations: algorithms and error correction[J].Russian Mathematical Surveys, 1997, 52(6): 1191–1249.
[133] Alicea J, Oreg Y, Refael G, von Oppen F, Fisher M P A. Non-Abelianstatistics and topological quantum information processing in 1D wirenetworks[J]. Nature Physics, 2011, 7(5): 412–417.
[134] Stenger J P T, Hatridge M, Frolov S M, Pekker D. Braiding quantum circuitbased on the 4π Josephson effect[J]. Physical Review B, 2019, 99(3):035307.
[135] Lian B, Sun X-Q, Vaezi A, Qi X-L, Zhang S-C. Topological quantumcomputation based on chiral Majorana fermions[J]. Proceedings of theNational Academy of Sciences, 2018, 115(43): 10938–10942.
[136] Liu X, Li X, Deng D-L, Liu X-J, Das Sarma S. Majorana spintronics[J].Physical Review B, 2016, 94(1): 014511.
[137] Zhou Y-F, Hou Z, Zhang Y-T, Sun Q-F. Chiral Majorana fermion modesregulated by a scanning tunneling microscope tip[J]. Physical Review B,2018, 97(11): 115452.
[138] Zhou Y-F, Hou Z, Lv P, Xie X, Sun Q-F. Magnetic flux control of chiralMajorana edge modes in topological superconductor[J]. Science ChinaPhysics, Mechanics & Astronomy, 2018, 61(12): 127811.
[139] Zhou Y-F, Hou Z, Sun Q-F. Non-Abelian operation on chiral Majoranafermions by quantum dots[J]. Physical Review B, 2019, 99(19): 195137.
[140] Yan Q, Zhou Y-F, Sun Q-F. Electrically tunable chiral Majorana edge modesin quantum anomalous Hall insulator–topological superconductor systems[J].Physical Review B, 2019, 100(23): 235407.
[141] Yan Q, Sun Q-F. Realization of arbitrary two-qubit quantum gates based onchiral Majorana fermions[J]. Chinese Physics B, 2021, 30(4): 040303.
[142] Wang A-Q, Li C-Z, Li C, Liao Z-M, Brinkman A, Yu D-P. 4π-PeriodicSupercurrent from Surface States in Cd3As2 Nanowire-Based JosephsonJunctions[J]. Physical Review Letters, 2018, 121(23): 237701.
[143] Yang G, Lyu Z, Zhang X, Qu F, Lu L. Probing the minigap in topologicalinsulator-based Josephson junctions under radio frequency irradiation[J].Chinese Physics B, 2019, 28(12): 127402.
[144] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, KouwenhovenL P. Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices[J]. Science, 2012, 336(6084): 1003–1007.
[145] Beenakker C, Kouwenhoven L. A road to reality with topologicalsuperconductors[J]. Nature Physics, 2016, 12(7): 618–621.
[146] Prada E, San-Jose P, de Moor M W A, Geresdi A, Lee E J H, Klinovaja J,Loss D, Nygård J, Aguado R, Kouwenhoven L P. From Andreev to Majoranabound states in hybrid superconductor–semiconductor nanowires[J]. NatureReviews Physics, 2020, 2(10): 575–594.
[147] Huang Y, Setiawan F, Sau J D. Disorder-induced half-integer quantizedconductance plateau in quantum anomalous Hall insulator-superconductorstructures[J]. Physical Review B, 2018, 97(10): 100501.
[148] Ji W, Wen X-G. 1/2(e2/h) Conductance Plateau without 1D Chiral MajoranaFermions[J]. Physical Review Letters, 2018, 120(10): 107002.
[149] Lian B, Wang J, Sun X-Q, Vaezi A, Zhang S-C. Quantum phase transition ofchiral Majorana fermions in the presence of disorder[J]. Physical Review B,2018, 97(12): 125408.
[150] Kayyalha M, Xiao D, Zhang R, Shin J, Jiang J, Wang F, Zhao Y-F, Xiao R,Zhang L, Fijalkowski K M, Mandal P, Winnerlein M, Gould C, Li Q,Molenkamp L W, Chan M H W, Samarth N, Chang C-Z. Absence of evidencefor chiral Majorana modes in quantum anomalous Hall-superconductordevices[J]. Science, 2020, 367(6473): 64–67.
[151] Beenakker C W J, Pikulin D I, Hyart T, Schomerus H, Dahlhaus J P.Fermion-Parity Anomaly of the Critical Supercurrent in the QuantumSpin-Hall Effect[J]. Physical Review Letters, 2013, 110(1): 017003.
[152] Crépin F, Trauzettel B. Parity Measurement in Topological JosephsonJunctions[J]. Physical Review Letters, 2014, 112(7): 077002.
[153] Peng Y, Vinkler-Aviv Y, Brouwer P W, Glazman L I, von Oppen F. ParityAnomaly and Spin Transmutation in Quantum Spin Hall JosephsonJunctions[J]. Physical Review Letters, 2016, 117(26): 267001.
[154] Schrade C, Fu L. Parity-Controlled 2π Josephson Effect Mediated byMajorana Kramers Pairs[J]. Physical Review Letters, 2018, 120(26): 267002.
[155] Sumita S, Furusaki A. Superconductor/normal-metal/superconductor junctionof topological superconductors revisited: Fractional Josephson current,fermion parity, and oscillating wave functions[J]. Physical Review B, 2021,104(20): 205431.
[156] Ma M, Zyuzin A Y. Josephson Effect in the Quantum Hall Regime[J].Europhysics Letters (EPL), 1993, 21(9): 941–945.
[157] Sun Q-F, Li Y-X, Long W, Wang J. Quantum Andreev effect intwo-dimensional HgTe/CdTe quantum well/superconductor systems[J].Physical Review B, 2011, 83(11): 115315.
[158] Knez I, Du R-R, Sullivan G. Andreev Reflection of Helical Edge Modes inInAs/GaSb Quantum Spin Hall Insulator[J]. Physical Review Letters, 2012,109(18): 186603.
[159] Baxevanis B, Ostroukh V P, Beenakker C W J. Even-odd flux quanta effect inthe Fraunhofer oscillations of an edge-channel Josephson junction[J].Physical Review B, 2015, 91(4): 041409.
[160] Pribiag V S, Beukman A J A, Qu F, Cassidy M C, Charpentier C,Wegscheider W, Kouwenhoven L P. Edge-mode superconductivity in atwo-dimensional topological insulator[J]. Nature Nanotechnology, 2015,10(7): 593–597.
[161] Tkachov G, Burset P, Trauzettel B, Hankiewicz E M. Quantum interferenceof edge supercurrents in a two-dimensional topological insulator[J]. PhysicalReview B, 2015, 92(4): 045408.
[162] Ben Shalom M, Zhu M J, Fal’ko V I, Mishchenko A, Kretinin A V,Novoselov K S, Woods C R, Watanabe K, Taniguchi T, Geim A K, Prance J R.Quantum oscillations of the critical current and high-field superconductingproximity in ballistic graphene[J]. Nature Physics, 2016, 12(4): 318–322.
[163] Song J, Liu H, Liu J, Li Y-X, Joynt R, Sun Q, Xie X C. Quantum interferencein topological insulator Josephson junctions[J]. Physical Review B, 2016,93(19): 195302.
[164] Amet F, Ke C T, Borzenets I V, Wang J, Watanabe K, Taniguchi T, Deacon RS, Yamamoto M, Bomze Y, Tarucha S, Finkelstein G. Supercurrent in thequantum Hall regime[J]. Science, 2016, 352(6288): 966–969.
[165] Liu J, Liu H, Song J, Sun Q-F, Xie X C. Superconductor graphenesuperconductor Josephson junction in the quantum Hall regime[J]. PhysicalReview B, 2017, 96(4): 045401.
[166] Lennart Bours, Sothmann B, Carrega M, Strambini E, Hankiewicz E M,Molenkamp L W, Giazotto F. Topological SQUIPT Based on Helical EdgeStates in Proximity to Superconductors[J]. Physical Review Applied, 2018,10(1): 014027.
[167] Wei M, Zhou M, Zhang Y-T, Xing Y. From quantized local Andreevreflection to perfect crossed Andreev reflection in topological insulator–superconductor hybrid systems[J]. Physical Review B, 2020, 101(15):155408.
[168] Zhao L, Arnault E G, Bondarev A, Seredinski A, Larson T F Q, Draelos A W,Li H, Watanabe K, Taniguchi T, Amet F, Baranger H U, Finkelstein G.Interference of chiral Andreev edge states[J]. Nature Physics, 2020, 16(8):862–867.
[169] Szombati D B, Nadj-Perge S, Car D, Plissard S R, Bakkers E P A M,Kouwenhoven L P. Josephson φ0-junction in nanowire quantum dots[J].Nature Physics, 2016, 12(6): 568–572.
[170] Reynoso A A, Usaj G, Balseiro C A, Feinberg D, Avignon M. AnomalousJosephson Current in Junctions with Spin Polarizing Quantum PointContacts[J]. Physical Review Letters, 2008, 101(10): 107001.
[171] Buzdin A. Direct Coupling Between Magnetism and SuperconductingCurrent in the Josephson φ0 Junction[J]. Physical Review Letters, 2008,101(10): 107005.
[172] Zazunov A, Egger R, Jonckheere T, Martin T. Anomalous Josephson Currentthrough a Spin-Orbit Coupled Quantum Dot[J]. Physical Review Letters,2009, 103(14): 147004.
[173] Liu J-F, Chan K S. Relation between symmetry breaking and the anomalousJosephson effect[J]. Physical Review B, 2010, 82(12): 125305.
[174] Gingrich E C, Niedzielski B M, Glick J A, Wang Y, Miller D L, Loloee R,Pratt Jr W P, Birge N O. Controllable 0-π Josephson junctions containing aferromagnetic spin valve[J]. Nature Physics, 2016, 12(6): 564–567.
[175] Reynoso A A, Usaj G, Balseiro C A, Feinberg D, Avignon M.Spin-orbit-induced chirality of Andreev states in Josephson junctions[J].Physical Review B, 2012, 86(21): 214519.
[176] Padurariu C, Nazarov YU V. Theoretical proposal for superconducting spinqubits[J]. Physical Review B, 2010, 81(14): 144519.
[177] Mal’shukov A G. Long-range effect of a Zeeman field on the electric currentthrough the helical metal-superconductor interface in an Andreevinterferometer[J]. Physical Review B, 2018, 97(6): 064515.
[178] Shukrinov YU M, Rahmonov I R, Sengupta K. Ferromagnetic resonance andmagnetic precessions in φ0 junctions[J]. Physical Review B, 2019, 99(22):224513.
[179] Alidoust M. Critical supercurrent and φ0 state for probing a persistent spinhelix[J]. Physical Review B, 2020, 101(15): 155123.
[180] Alidoust M, Shen C, Žutić I. Cubic spin-orbit coupling and anomalousJosephson effect in planar junctions[J]. Physical Review B, 2021, 103(6):L060503.
[181] Braude V, Nazarov YU V. Fully Developed Triplet Proximity Effect[J].Physical Review Letters, 2007, 98(7): 077003.
[182] Liu J-F, Chan K S. Anomalous Josephson current through a ferromagnetictrilayer junction[J]. Physical Review B, 2010, 82(18): 184533.
[183] Liu J-F, Sum Chan K, Wang J. Anomalous Josephson Current through aFerromagnet-Semiconductor Hybrid Structure[J]. Journal of the PhysicalSociety of Japan, 2011, 80(12): 124708.
[184] Alidoust M, Willatzen M, Jauho A-P. Fraunhofer response and supercurrentspin switching in black phosphorus with strain and disorder[J]. PhysicalReview B, 2018, 98(18): 184505.
[185] Amin M H S, Omelyanchouk A N, Zagoskin A M. Mechanisms ofspontaneous current generation in an inhomogeneous d-wavesuperconductor[J]. Physical Review B, 2001, 63(21): 212502.
[186] Ashby P E C, Kallin C. Suppression of spontaneous supercurrents in a chiralp-wave superconductor[J]. Physical Review B, 2009, 79(22): 224509.
[187] Liu J-F. Anomalous Josephson Effect in Triplet Superconductor-Ferromagnet-Triplet Superconductor Junctions[J]. Journal of the PhysicalSociety of Japan, 2014, 83(2): 024712.
[188] Zhang H, Wang J, Liu J-F. Anomalous Josephson effect innoncentrosymmetric superconductors[J]. Applied Physics Letters, 2016,108(10): 102601.
[189] Liu J-F, Xu Y, Wang J. Identifying the chiral d-wave superconductivity byJosephson φ0-states[J]. Scientific Reports, 2017, 7(1): 43899.
[190] Tanaka Y, Yokoyama T, Nagaosa N. Manipulation of the Majorana Fermion,Andreev Reflection, and Josephson Current on Topological Insulators[J].Physical Review Letters, 2009, 103(10): 107002.
[191] Dolcini F, Houzet M, Meyer J S. Topological Josephson ϕ0 junctions[J].Physical Review B, 2015, 92(3): 035428.
[192] Wang J, Hao L, Liu J-F. Electric control of the Josephson current-phaserelation in a topological circuit[J]. Physical Review B, 2016, 93(15): 155405.
[193] Zyuzin A, Alidoust M, Loss D. Josephson junction through a disorderedtopological insulator with helical magnetization[J]. Physical Review B, 2016,93(21): 214502.
[194] Bobkova I V, Bobkov A M, Zyuzin A A, Alidoust M. Magnetoelectrics indisordered topological insulator Josephson junctions[J]. Physical Review B,2016, 94(13): 134506.
[195] Zhou X, Jin G. Silicene-based π and φ0 Josephson junctions[J]. PhysicalReview B, 2017, 95(19): 195419.
[196] Alidoust M, Hamzehpour H. Spontaneous supercurrent and φ0 phase shiftparallel to magnetized topological insulator interfaces[J]. Physical Review B,2017, 96(16): 165422.
[197] Alidoust M, Willatzen M, Jauho A-P. Strain-engineered Majorana zeroenergy modes and φ0 Josephson state in black phosphorus[J]. PhysicalReview B, 2018, 98(8): 085414.
[198] Alidoust M. Self-biased current, magnetic interference response, andsuperconducting vortices in tilted Weyl semimetals with disorder[J]. PhysicalReview B, 2018, 98(24): 245418.
[199] Fu P-H, Wang J, Liu J-F, Wang R-Q. Josephson signatures of Weyl nodecreation and annihilation in irradiated Dirac semimetals[J]. Physical ReviewB, 2019, 100(11): 115414.
[200] Alidoust M, Halterman K. Evolution of pair correlation symmetries andsupercurrent reversal in tilted Weyl semimetals[J]. Physical Review B, 2020,101(3): 035120.
[201] Kulikov K, Sinha D, Shukrinov YU M, Sengupta K. Josephson junctions ofWeyl and multi-Weyl semimetals[J]. Physical Review B, 2020, 101(7):075110.
[202] Sinha D. Josephson effect in type-I Weyl semimetals[J]. Physical Review B,2020, 102(8): 085144.
[203] Goldobin E, Koelle D, Kleiner R. Tunable ±φ, φ0, and φ0±φ Josephsonjunction[J]. Physical Review B, 2015, 91(21): 214511.
[204] Yokoyama T, Eto M, Nazarov Y V. Anomalous Josephson effect induced byspin-orbit interaction and Zeeman effect in semiconductor nanowires[J].Physical Review B, 2014, 89(19): 195407.
[205] Klam L, Epp A, Chen W, Sigrist M, Manske D. Josephson effect andtriplet-singlet ratio of noncentrosymmetric superconductors[J]. PhysicalReview B, 2014, 89(17): 174505.
[206] Tanaka Y, Sato M, Nagaosa N. Symmetry and Topology in SuperconductorsOdd-Frequency Pairing and Edge States[J]. Journal of the Physical Society ofJapan, 2012, 81(1): 011013.
[207] Wang C M, Sun H-P, Lu H-Z, Xie X C. 3D Quantum Hall Effect of FermiArcs in Topological Semimetals[J]. Physical Review Letters, 2017, 119(13):136806.
[208] Zhang C, Narayan A, Lu S, Zhang J, Zhang H, Ni Z, Yuan X, Liu Y, Park JH,Zhang E, Wang W, Liu S, Cheng L, Pi L, Sheng Z, Sanvito S, Xiu F.Evolution of Weyl orbit and quantum Hall effect in Dirac semimetalCd3As2[J]. Nature Communications, 2017, 8(1): 1272.
[209] Schumann T, Galletti L, Kealhofer D A, Kim H, Goyal M, Stemmer S.Observation of the Quantum Hall Effect in Confined Films of theThree-Dimensional Dirac Semimetal Cd3As2[J]. Physical Review Letters,2018, 120(1): 016801.
[210] Zhang C, Zhang Y, Yuan X, Lu S, Zhang J, Narayan A, Liu Y, Zhang H, Ni Z,Liu R, Choi E S, Suslov A, Sanvito S, Pi L, Lu H-Z, Potter A C, Xiu F.Quantum Hall effect based on Weyl orbits in Cd3As2[J]. Nature, 2019,565(7739): 331–336.
[211] Deng W, Huang X, Lu J, Peri V, Li F, Huber S D, Liu Z. Acoustic spin-Cherninsulator induced by synthetic spin–orbit coupling with spin conservationbreaking[J]. Nature Communications, 2020, 11(1): 3227.
[212] Yang Y, Qian X, Shi L, Shen X, Wang Y, Hang Z H. Observation and controlof pseudospin switching in a finite-width topological photonic crystal[J].Optics Express, 2022, 30(4): 5731.
[213] Lee D H, Joannopoulos J D. Simple scheme for surface-band calculations. II.The Green’s function[J]. Physical Review B, 1981, 23(10): 4997–5004.
[214] Büttiker M. Scattering theory of current and intensity noise correlations inconductors and wave guides[J]. Physical Review B, 1992, 46(19): 12485–12507.
[215] Datta S, van Houten H. Electronic Transport in Mesoscopic Systems[J].Physics Today, 1996, 49(5): 70–70.
[216] Li C-A, Li J, Shen S-Q. Majorana-Josephson interferometer[J]. PhysicalReview B, 2019, 99(10): 100504.
[217] Ikegaya S, Asano Y, Manske D. Anomalous Nonlocal Conductance as aFingerprint of Chiral Majorana Edge States[J]. Physical Review Letters,2019, 123(20): 207002.
[218] Qi X-L, Wu Y-S, Zhang S-C. Topological quantization of the spin Hall effectin two-dimensional paramagnetic semiconductors[J]. Physical Review B,2006, 74(8): 085308.
[219] Blonder G E, Tinkham M, Klapwijk T M. Transition from metallic totunneling regimes in superconducting microconstrictions: Excess current,charge imbalance, and supercurrent conversion[J]. Physical Review B, 1982,25(7): 4515–4532.
[220] Takane Y, Ebisawa H. Conductance Formula for Mesoscopic Systems with aSuperconducting Segment[J]. Journal of the Physical Society of Japan, 1992,61(5): 1685–1690.
[221] Anantram M P, Datta S. Current fluctuations in mesoscopic systems withAndreev scattering[J]. Physical Review B, 1996, 53(24): 16390–16402.
[222] Sun Q, Xie X C. Quantum transport through a graphene nanoribbon–superconductor junction[J]. Journal of Physics: Condensed Matter, 2009,21(34): 344204.
[223] Entin-Wohlman O, Imry Y, Aharony A. Conductance of superconductingnormalhybrid structures[J]. Physical Review B, 2008, 78(22): 224510.
[224] Beenakker C W J. Quantum transport in semiconductor- superconductormicrojunctions[J]. Physical Review B, 1992, 46(19): 12841–12844.
[225] Li J, Fleury G, Büttiker M. Scattering theory of chiral Majorana fermioninterferometry[J]. Physical Review B, 2012, 85(12): 125440.
[226] Yang K-Y, Lu Y-M, Ran Y. Quantum Hall effects in a Weyl semimetal:Possible application in pyrochlore iridates[J]. Physical Review B, 2011,84(7): 075129.
修改评论