中文版 | English
题名

人组织 CXCR6+ NK细胞的表型功能鉴定及其体外扩增

其他题名
PHENOTYPIC AND FUNCTIONAL IDENTIFICATION AND IN VITRO AMPLIFICATION OF HUMAN CXCR6+ NATURAL KILLER CELLS
姓名
姓名拼音
SU Xu
学号
11930116
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
张政
导师单位
深圳市第三人民医院
论文答辩日期
2022-05-09
论文提交日期
2022-06-27
学位授予单位
学位授予地点
深圳
摘要

自然杀伤细胞(Natural Killer,NK),作为固有免疫防御的重要细胞,在抵御病原体入侵和肿瘤监视中发挥重要作用。根据其生物学特性,NK细胞可分为外周血NKPeripheral blood NK, PB-NK)细胞和组织定植NK Tissue-resident, Tr-NK)细胞。其中,定植于人体肝脏和脾脏的Tr-NK细胞对于机体抗病原和抗肿瘤免疫具有重要意义。然而,当前针对肝脏定植NKLiver-resident NKLr-NK)细胞和脾脏定植NK细胞(Spleen-resident NKSr-NK)的功能与特性研究较少。因此,本课题在符合伦理要求的情况下,获得移植供者肝脏灌洗液及脾脏组织,经样本处理后,得到表达CXCR6Sr-NK细胞和Lr-NK细胞,结果显示:组织定植NK细胞高表达CD69和激活受体。在细胞因子刺激下,无论健康供者还是肝硬化患者,其CXCR6+ Tr-NK细胞杀伤能力均强于CXCR6- NK细胞。

不同于T细胞,NK细胞低表达HLA抗原Human leukocyte antigen, HLA,功能发挥不依赖抗原递呈,临床应用时副作用小,是理想的“即用式(off-the-shelf)”免疫细胞过继药物。因此,本课题联合应用无血清培养基与细胞因子,体外扩增Tr-NK细胞200倍以上;并分析鉴定了培养扩增前后Tr-NK细胞表面受体及相关分子标志物的表达差异。结果表明,体外扩增后的NK细胞高表达激活受体。比较扩增前后Tr-NK细胞对靶细胞系(K562)的杀伤能力及细胞毒性标志物,发现 Tr-NK细胞在扩增后保持高水平的靶细胞杀伤功能;通过构建体外肝脏类器官模型,我们揭示Tr-NK细胞具有良好的肝脏组织趋向性。

综上所述,该课题初步探究了脾脏和肝脏定植NK细胞的表型、功能及杀伤效力。开发了一种高效体外扩增Tr-NK细胞的技术,并初步鉴定了Tr-NK细胞扩增后的表型与功能,对Tr-NK细胞的基础免疫学及细胞治疗临床研究具有重要的技术指导意义。

其他摘要

Natural killer(Natural killer,NK)cells play critical roles against tumors and pathogens.NK cellsare classifiedinto peripheral blood NK(PB-NK)cells and tissue resident NK(Tr-NK)cells according to theirbiological characteristics.Especially,Tr-NK cells locatedin human liver and spleenare importantforlocalimmunity,andtreatment against pathogens and cancer.But thereisrareattentionon the immune functions and biological properties of liver-resident NK(Lr-NK)cells and spleen-resident NK(Sr-NK)cells.Using healthy liver perfusate,liver and spleensamples,weisolatedSr-NK cells and Lr-NK cells expressing CXCR6fromsamples.The result showedthat Tr-NK cells express high levels ofCD69andactivating receptors.In vitrostimulation
with cytokines,CXCR6+NKcellsweremore cytotoxic than CXCR6-NK cells independent on tissues and disease status.
ComparedwithTcells,NK cellsexpress lower levels ofhuman leukocyte antigen(HLA). NK cells have less potentials to present antigen and less side effects whenappliedin the clinic.Hence,NKcellsarethe most promising "off-the-shelf" immune cells foradoptive-therapy.Therefore,basedon the biological characteristics of Tr-NK,weexpanded more than200-fold NK cellsinthe incubationwithserum-freemediumand cytokines.The expandedTr-NK cells expressedhigher levels ofactivating receptor than thoseoffresh Tr-NK cells.In addition, the expanded Tr-NK cells maintained their cytotoxic activity.Utilizing theliverorganoid modelin vitro,we found thatTr-NK cellswere morechemotaxis to liverexvivo.
In conclusion,the study investigated the phenotype, function and biological characteristics ofTr-NK cells in the spleen and liver, andalso developed an efficientexpansionprotocolof Tr-NK cellsin vitro.Using these expanded Tr-NK cells,weidentified theirphenotypesand functions.These preliminary dataprovidedinsights on thebasic immunologyandclinical applicationof Tr-NK cells.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-07
参考文献列表

[1] SIERRA J M, SECCHIARI F, NUñEZ S Y, et al. Tumor-Experienced Human NK Cells Express High Levels of PD-L1 and Inhibit CD8+ T Cell Proliferation[J]. Frontiers in Immunology,2021,12:3821.
[2] COOK K, WHITMIRE JJJOI. The depletion of NK cells prevents T cell exhaustion to efficiently control disseminating virus infection[J]. Journal of Immunology,2013, 190(2):641-649.
[3] LANG P, LANG K, XU H, et al. Natural killer cell activation enhances immune pathology and promotes chronic infection by limiting CD8+ T-cell immunity[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(4):1210-1215.
[4] LAFFONT S, SEILLET C, ORTALDO J, et al. Natural killer cells recruited into lymph nodes inhibit alloreactive T-cell activation through perforin-mediated killing of donor allogeneic dendritic cells[J]. Blood,2008,112(3):661-671.
[5] EHLERS M, PAPEWALIS C, STENZEL W, et al. Immunoregulatory natural killer cells suppress autoimmunity by down-regulating antigen-specific CD8+ T cells in mice[J]. Endocrinology,2012,153(9):4367-4379.
[6] Male V. Liver-resident NK cells:The human factor[J]. Trends in Immunology,2017,38(5):307-309.
[7] DOGRA P, RANCAN C, MA W, et al. Tissue determinants of human NK cell development, function, and residence[J]. Cell,2020,180(4):749-763.e13.
[8] PENG H, JIANG X, CHEN Y, et al. Liver-resident NK cells confer adaptive i-mmunity in skin-contact inflammation[J]. The Journal of Clinical Investigation,2013,123(4):1444-1456.
[9] KORBECKI J, BAJDAK-RUSINEK K, KUPNICKA P, et al. The role of CXCL16 in the pathogenesis of cancer and other diseases[J]. International Journal of Molecular Sciences,2021,22(7):3490.
[10] ZERNECKE A, SHAGDARSUREN E, WEBER C. Chemokines in atherosclerosis: an update[J]. Arteriosclerosis, Thrombosis, and Vascular Biology,2008,28(11):1897-1908.
[11] MEYER DOS SANTOS S, BLANKENBACH K, SCHOLICH K, et al. Platelets from flowing blood attach to the inflammatory chemokine CXCL16 expressed in the endothelium of the human vessel wall[J]. Thrombosis and Haemostasis,2015,114(2):297-312.
[12] YU J, FREUD A, CALIGIURI M. Location and cellular stages of natural killer cell development[J]. Trends in Immunology,2013,34(12):573-582.
[13] KHAWAR M, SUN H. CAR-NK Cells: From natural basis to design for kill[J]. Frontiers in Immunology,2021,12:707542.
[14] ZHOU J, TIAN Z, PENG H. Tissue-resident NK cells and other innate lymphoid cells [J]. Advances in Immunology,2020,145:37-53.
[15] ANGELO L, BIMLER L, NIKZAD R, et al. CXCR6 NK Cells in human fetal liver and spleen possess unique phenotypic and functional capabilities[J]. Frontiers in Immunology,2019,10:469.
[16] PENG H, JIANG X, CHEN Y, et al. Liver-resident NK cells confer adaptive immunity in skin-contact inflammation[J]. The Journal of Clinical Investigation,2013, 123(4):1444-1456.
[17] VARGAS C, POURSINE-LAURENT J, YANG L, et al. Development of thymic NK cells from double negative 1 thymocyte precursors[J]. Blood,2011,118(13):3570-3578.
[18] FREUD A, MUNDY-BOSSE B, YU J, et al. The Broad Spectrum of Human Natural Killer Cell Diversity[J]. Immunity, 2017, 47(5): 820-833.
[19] LI X, ZHANG M, LIU J, et al. Intrahepatic NK cells function suppressed in advanced liver fibrosis[J]. European Journal of Clinical Investigation,2016,46(10):864-872.
[20] WIJAYA R, READ S, SCHIBECI S, et al. KLRG1+ natural killer cells exert a novel antifibrotic function in chronic hepatitis B[J]. Journal of Hepatology,2019,71(2):252-264.
[21] STEGMANN K, ROBERTSON F, HANSI N, et al. CXCR6 marks a novel subset of T-bet(lo)Eomes(hi) natural killer cells residing in human liver[J]. Scientific Reports,2016,6: 26157.
[22] CHOREñO-PARRA J, JIMéNEZ-ÁLVAREZ L, MUñOZ-TORRICO M, et al. Mycobacterium tuberculosisAntigens of Stimulate CXCR6+ Natural Killer Cells[J]. Frontiers in Immunology,2020,11:582414.
[23] ZHAO J, ZHANG S, LIU Y, et al. Single-cell RNA sequencing reveals the heterogeneity of liver-resident immune cells in human[J]. Cell Discovery,2020,6:22.
[24] 李晨, 万志红, 辛绍杰. TRAIL及其受体与HBV相关慢性肝病相关性的研究进展[J]. 传染病信息,2016,29(6):370-374.
[25] VIVIER E, RAULET D, MORETTA A, et al. Innate or adaptive immunity?The example of natural killer cells[J]. Science (New York, NY),2011,31(6013): 44-49.
[26] DUEV-COHEN A, BAR-ON Y, GLASNER A, et al. The human 2B4 and NTB-A receptors bind the influenza viral hemagglutinin and co-stimulate NK cell cytotoxicity[J]. Oncotarget,2016,7(11):13093-13105.
[27] PAUST S, GILL H, WANG B, et al. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses[J]. Nature Immunology,2010,11(12):1127-1135.
[28] STEGMANN K, ROBERTSON F, HANSI N, et al. CXCR6 marks a novel subset of T-bet(lo)Eomes(hi) natural killer cells residing in human liver[J]. Scientific Reports,2016,6:26157.
[29] TOSELLO-TRAMPONT A, SURETTE F, EWALD S, et al. Immunoregulatory role of NK cells in tissue inflammation and regeneration[J]. Frontiers in Immunology,2017, 8:301.
[30] SHABANI Z, BAGHERI M, ZARE-BIDAKI M, et al. NK cells in hepatitis B virus infection: a potent target for immunotherapy[J]. Archives of Virology,2014,159(7):1555-1565.
[31] ARABABADI M, POURFATHOLLAH A, JAFARZADEH A, et al. Serum Levels of IL-10 and IL-17A in occult HBV-infected south-east Iranian patients[J]. Hepatitis Monthly,2010,10(1):31-35.
[32] MAINI M, PEPPA D. NK cells: a double-edged sword in chronic hepatitis B virus infection[J]. Frontiers in Immunology,2013,4:57.
[33] LI X, ZHANG M, LIU J, et al. Intrahepatic NK cells function suppressed in advanced liver fibrosis[J]. European Journal of Clinical Investigation,2016,46(10):864-872.
[34] LUNEMANN S, LANGENECKERT A, MARTRUS G, et al. Human liver-derived CXCR6 NK cells are predominantly educated through NKG2A and show reduced cytokine production[J]. Journal of Leukocyte Biology,2019,105(6):1331-1340.
[35] MILLER J. Therapeutic applications: natural killer cells in the clinic[J]. Hematology American Society of Hematology Education Program,2013,2013:247-253.
[36] 石光环,周世平,徐东升,等. 扩增的NK细胞对胃癌细胞的杀伤作用及其机制[J]. 吉林大学学报(医学版),2020,46(3):530-535.
[37] RAM D, MANICKAM C, LUCAR O, et al. Adaptive NK cell responses in HIV/SIV infections: A roadmap to cell-based therapeutics?[J]. Journal of Leukocyte Biology, 2019,105(6):1253-1259.
[38] 蔡惠宁,许燕,陈晓燕,等. HBV感染对体外培养NK细胞生物活性影响的研究[J]. 中华肝脏外科手术学电子杂志,2020(3):274-277.
[39] ROMAGNANI C, JUELKE K, FALCO M, et al. CD56brightCD16-killer Ig-like receptor-NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation[J]. Journal of Immunology,2007,178(8):4947-4955.
[40] MONTALDO E, DEL ZOTTO G, DELLA CHIESA M, et al. Human NK cell receptors/markers: a tool to analyze NK cell development, subsets and function[J]. Cytometry Part A : the journal of the International Society for Analytical Cytology,2013,83(8):702-713.
[41] LI T, WANG J, WANG Y, et al. Respiratory influenza virus infection induces memory-like liver NK Cells in mice[J]. Journal of Immunology,2017,198(3):1242-1252.
[42] WU L, WANG J. Warm up, cool down, and tearing apart in NK cell memory[J]. Cellular & Molecular Immunology,2018,15(12):1095-1097.
[43] EASOM N, STEGMANN K, SWADLING L, et al. IL-15 overcomes hepatocellular carcinoma-induced NK cell dysfunction[J]. Frontiers in Immunology,2018,9:1009.
[44] HARMON C, ROBINSON M, HAND F, et al. Lactate-mediated acidification of tumor microenvironment induces apoptosis of liver-resident NK Cells in colorectal liver metastasis[J]. Cancer Immunology Research,2019,7(2):335-346.
[45] DI VITO C, MIKULAK J, MAVILIO D. On the way to become a natural killer cell [J]. Frontiers in Immunology,2019,10: 1812.
[46] DI SANTO J. Natural killer cell developmental pathways: a question of balance[J]. Annual Review of Immunology,2006,24: 257-286.
[47] HANNA J, WALD O, GOLDMAN-WOHL D, et al. CXCL12 expression by invasive trophoblasts induces the specific migration of CD16-human natural killer cells[J]. Blood,2003,102(5):1569-1577.
[48] YU Y, FONG A, COMBADIERE C, et al. Defective antitumor responses in CX3CR1-deficient mice[J]. International Journal of Cancer,2007,121(2):316-322.
[49] SUN C, FU B, GAO Y, et al. TGF-β1 down-regulation of NKG2D/DAP10 and 2B4/SAP expression on human NK cells contributes to HBV persistence[J]. PLoS Pathogens,2012,8(3): e1002594.
[50] HUANG Z, FU B, ZHENG S, et al. Involvement of CD226+ NK cells in immunopathogenesis of systemic lupus erythematosus[J]. Journal of Immunology,2011,186(6):3421-3431.
[51] KEE B, MORMAN R, SUN M. Transcriptional regulation of natural killer cell development and maturation[J]. Advances in Immunology,2020,146:1-28.
[52] LIASKOU E, WILSON D, OO Y. Innate immune cells in liver inflammation[J]. Mediators of Inflammation,2012,2012:949157.
[53] SEKI T, SHIMIZU Y, ISHII K, et al. NK cells can preferentially target prostate cancer stem-like cells via the TRAIL/DR5 signaling pathway[J]. Biomolecules,2021,11(11):1702.
[54] LEE J, DIECKMANN N, EDGAR J, et al. Fas Ligand localizes to intraluminal vesicles within NK cell cytolytic granules and is enriched at the immune synapse[J]. Immunity,Inflammation and Disease,2018,6(2):312-321.
[55] PELLICCI D, HAMMOND K, COQUET J, et al. DX5/CD49b-positive T cells are not synonymous with CD1d-dependent NKT cells[J]. Journal of Immunology,2005,175(7):4416-4425.
[56] WU J, WU D, ZHANG L, et al. NK cells induce hepatic ER stress to promote insulin resistance in obesity through osteopontin production[J]. Journal of Leukocyte Biology, 2020,107(4):589-596.
[57] CHIOSSONE L, CHAIX J, FUSERI N, et al. Maturation of mouse NK cells is a 4-stage developmental program[J]. Blood,2009,113(22):5488-5596.
[58] SUN J, BEILKE J, LANIER L. Adaptive immune features of natural killer cells[J]. Nature,2009,457(7229):557-561.
[59] FU B, WANG F, SUN R, et al. CD11b and CD27 reflect distinct population and functional specialization in human natural killer cells[J]. Immunology,2011,133(3):350-359.
[60] JIN J, FU B, MEI X, et al. CD11b(-)CD27(-) NK cells are associated with the progression of lung carcinoma[J]. PloS One, 2013, 8(4): e61024.
[61] ZHANG Q, YIN W, XIA Y, et al. Liver-infiltrating CD11bCD27 NK subsets account for NK-cell dysfunction in patients with hepatocellular carcinoma and are associated with tumor progression[J]. Cellular & Molecular Immunology,2017,14(10):819-829.
[62] VOSSEN M, MATMATI M, HERTOGHS K, et al. CD27 defines phenotypically and functionally different human NK cell subsets[J]. Journal of Immunology, 2008,180(6):3739-3745.
[63] FU B, TIAN Z, WEI H. Subsets of human natural killer cells and their regulatory effects[J]. Immunology,2014,141(4):483-489.
[64] FREUD A, KELLER K, SCOVILLE S, et al. NKp80 defines a critical step during human natural killer cell development[J]. Cell Reports,2016,16(2):379-391.
[65] BOZZANO F, DELLA CHIESA M, PELOSI A, et al. HCMV-controlling NKG2C NK cells originate from novel circulating inflammatory precursors[J]. The Journal of Allergy and Clinical Immunology,2021,147(6):2343-2357.
[66] GUMá M, ANGULO A, VILCHES C, et al. Imprint of human cytomegalovirus infection on the NK cell receptor repertoire[J]. Blood,2004,104(12):3664-3671.
[67] LUGTHART G, MELSEN J, VERVAT C, et al. Human lymphoid tissues harbor a distinct CD69+CXCR6+ NK cell population[J]. Journal of Immunology,2016,197(1):78-84.
[68] HUDSPETH K, DONADON M, CIMINO M, et al. Human liver-resident CD56(bright)/CD16(neg) NK cells are retained within hepatic sinusoids via the engagement of CCR5 and CXCR6 pathways[J]. Journal of Autoimmunity,2016,66:40-50.
[69] LEONE V, ALI A, WEBER A, et al. Liver Inflammation and hepatobiliary cancers [J]. Trends in Cancer,2021,7(7):606-623.
[70] WANG C, MA C, GONG L, et al. Macrophage polarization and its role in liver disease[J]. Frontiers in Immunology,2021,12:803037.
[71] SHI F, LJUNGGREN H, LA CAVA A, et al. Organ-specific features of natural killer cells[J]. Nature Reviews Immunology,2011,11(10):658-671.
[72] KUBES P, JENNE C. Immune Responses in the Liver[J]. Annual Review of Immunology,2018,36:247-277.
[73] FORD W, GOWANS J. The traffic of lymphocytes[J]. Seminars in Hematology,1969, 6(1):67-83.
[74] VON ANDRIAN U. NK cell memory: discovery of a mystery[J]. Nature Immunology, 2021,22(6):669-671.
[75] CUI G, HARA T, SIMMONS S, et al. Characterization of the IL-15 niche in primary and secondary lymphoid organs in vivo[J]. Proceedings of The National Academy of Sciences of The United States of America,2014,111(5):1915-1920.
[76] BRIARD D, BROUTY-BOYé D, AZZARONE B, et al. Fibroblasts from human spleen regulate NK cell differentiation from blood CD34(+) progenitors via cell surface IL-15[J]. Journal of Immunology,2002,168(9):4326-4332.
[77] WANG B, ZHOU J, CHEN Y, et al. A novel spleen-resident immature NK cell subset and its maturation in a T-bet-dependent manner[J]. Journal of Autoimmunity,2019,105: 102307.
[78] GORDON S, CHAIX J, RUPP L, et al. The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation[J]. Immunity,2012,36(1):55-67.
[79] DAUSSY C, FAURE F, MAYOL K, et al. T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow[J]. The Journal of Experimental Medicine,2014,211(3):563-577.
[80] YU X, WANG Y, DENG M, et al. The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor[J]. ELife,2014, 3:e04406..
[81] KIEKENS L, VAN LOOCKE W, TAVEIRNE S, et al. T-BET and EOMES accelerate and enhance functional differentiation of human natural killer cells[J]. Frontiers in Immunology,2021,12:732511.
[82] HYDES T, NOLL A, SALINAS-RIESTER G, et al. IL-12 and IL-15 induce the expression of CXCR6 and CD49a on peripheral natural killer cells[J]. Immunity, Inflammation and Disease,2018,6(1):34-46.
[83] WALDMANN T. Interleukin-15 in the treatment of cancer[J]. Expert Review of Clinical Immunology,2014,10(12):1689-1701.
[84] DUBOIS S, CONLON K, MüLLER J, et al. IL15 infusion of cancer patients expands the subpopulation of cytotoxic CD56 NK cells and increases NK-cell cytokine release capabilities[J]. Cancer Immunology Research,2017,5(10):929-938.
[85] KLöß S, OBERSCHMIDT O, MORGAN M, et al. Optimization of human NK Cell manufacturing: fully automated separation, improved ex vivo expansion using IL-21 with autologous feeder cells, and generation of anti-CD123-CAR-expressing effector cells[J]. Human Gene Therapy,2017,28(10):897-913.
[86] BOZZANO F, DENTONE C, PERRONE C, et al. Extensive activation, tissue trafficking, turnover and functional impairment of NK cells in COVID-19 patients at disease onset associates with subsequent disease severity[J]. PLoS Pathogens,2021,17(4): e1009448.
[87] LIM A, DI SANTO J. ILC-poiesis: Ensuring tissue ILC differentiation at the right place and time[J]. European Journal of Immunology,2019,49(1):11-18.
[88] JACQUELOT N, SEILLET C, SOUZA-FONSECA-GUIMARAES F, et al. Natural killer cells and type 1 innate lymphoid cells in hepatocellular carcinoma: current knowledge and future perspectives[J]. International Journal of Molecular Sciences, 2021, 22(16):9044.
[89] LI T, YANG Y, SONG H, et al. Activated NK cells kill hepatic stellate cells via p38/PI3K signaling in a TRAIL-involved degranulation manner[J]. Journal of Leukocyte Biology,2019,105(4) 695-704.
[90] MONTALDO E, VACCA P, CHIOSSONE L, et al. Unique Eomes(+) NK cell subsets are present in uterus and decidua during early pregnancy[J]. Frontiers in Immunology, 2015,6:646.
[91] CLARK D, REIHANI A, ARREDONDO J, et al. CD200S-positive granulated lymphoid cells in endometrium appear to be CD56-positive uterine NK cells[J]. Journal of Reproductive Immunology,2022,150:103477.
[92] TANG L, XU X, JIN L. Molecular characteristics and possible functions of innate lymphoid cells in the uterus and gut[J]. Cytokine & Growth Factor Reviews,2020,52:15-24.
[93] CARREGA P, PEZZINO G, QUEIROLO P, et al. Susceptibility of human melanoma cells to autologous natural killer (NK) cell killing: HLA-related effector mechanisms and role of unlicensed NK cells[J]. PloS One,2009,4(12):e8132.
[94] CARBONE T, NASORRI F, PENNINO D, et al. CD56highCD16-CD62L-NK cells accumulate in allergic contact dermatitis and contribute to the expression of allergic responses[J]. Journal of Immunology,2010,184(2):1102-1110.
[95] TARANNUM M, ROMEE R. Cytokine-induced memory-like natural killer cells for cancer immunotherapy[J]. Stem Cell Research & Therapy,2021,12(1):592.
[96] UPPENDAHL L, FELICES M, BENDZICK L, et al. Cytokine-induced memory-like natural killer cells have enhanced function, proliferation, and in vivo expansion against ovarian cancer cells[J]. Gynecologic Oncology,2019,153(1):149-157.
[97] ROMEE R, ROSARIO M, BERRIEN-ELLIOTT M, et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia[J]. Science Translational Medicine,2016,8(357):357ra123.
[98] CUFF A, ROBERTSON F, STEGMANN K, et al. Eomeshi NK cells in human liver are long-lived and do not recirculate but can be replenished from the circulation[J]. Journal of Immunology,2016,197(11):4283-4291.
[99] ZIBLAT A, NUñEZ S, RAFFO IRAOLAGOITIA X, et al. Interleukin (IL)-23 stimulates IFN-γ secretion by CD56 natural killer cells and enhances IL-18-driven dendritic cells activation[J]. Frontiers in Immunology,2017,8:1959.
[100] POZNANSKI S, ASHKAR A. What defines NK cell functional fate: phenotype or metabolism?[J]. Frontiers in Immunology,2019,10:1414.
[101] FAN X, RUDENSKY A. Hallmarks of tissue-resident lymphocytes[J]. Cell,2016, 164(6):1198-1211.
[102] BELIZAIRE R, KIM H, PORYANDA S, et al. Efficacy and immunologic effects of extracorporeal photopheresis plus interleukin-2 in chronic graft-versus-host disease[J]. Blood Advances,2019,3(7):969-979.
[103] MCQUAID S, LOUGHRAN S, POWER P, et al. Low-dose IL-2 induces CD56 NK regulation of T cells via NKp44 and NKp46[J]. Clinical and Experimental Immunology,2020,200(3):228-241.
[104] KATANO I, NISHIME C, ITO R, et al. Long-term maintenance of peripheral blood derived human NK cells in a novel human IL-15-transgenic NOG mouse[J]. Scientific Reports,2017,7(1):17230.
[105] COOLEY S, HE F, BACHANOVA V, et al. First-in-human trial of rhIL-15 and haploidentical natural killer cell therapy for advanced acute myeloid leukemia[J]. Blood Advances,2019,3(13):1970-1980.
[106] MORETTA A, BIASSONI R, BOTTINO C, et al. Natural cytotoxicity receptors that trigger human NK-cell-mediated cytolysis[J]. Immunology Today,2000,21(5):228-234.
[107] DENG J, ZHANG X, CHEN Z, et al. A cell lines derived microfluidic liver model for investigation of hepatotoxicity induced by drug-drug interaction[J]. Biomicrofluidics,2019,13(2):024101.
[108] ZHAO Z, LU F, MA H, et al. Liver-resident NK cells suppress autoimmune cholangitis and limit the proliferation of CD4 T cells[J]. Cellular & Molecular Immunology,2020,17(2):178-189.
[109] HARMON C, ROBINSON M, FAHEY R, et al. Tissue-resident Eomes(hi) T-bet(lo) CD56(bright) NK cells with reduced proinflammatory potential are enriched in the adult human liver[J]. European Journal of Immunology,2016,46(9):2111-2120.
[110] MORI M, BOGDAN A, BALASSA T, et al. The decidua-the maternal bed embracing the embryo-maintains the pregnancy[J]. Seminars in Immunopathology, 2016,38(6):635-649.
[111] VALLERA D, FELICES M, MCELMURRY R, et al. IL15 Trispecific killer engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function[J]. Clinical Cancer Research,2016,22(14):3440-3450.
[112] DOLSTRA H, ROEVEN M, SPANHOLTZ J, et al. Successful transfer of umbilical cord blood CD34 hematopoietic stem and progenitor-derived NK cells in older acute myeloid leukemia patients[J]. Clinical Cancer Research,2017,23(15):4107-4118.
[113] CARLSTEN M, LEVY E, KARAMBELKAR A, et al. Efficient mRNA-Based genetic engineering of human NK cells with high-Affinity CD16 and CCR7 augments rituximab-Induced ADCC against lymphoma and targets NK cell migration toward the lymph node-associated chemokine CCL19[J]. Frontiers in Immunology,2016,7:105.
[114] SPANHOLTZ J, TORDOIR M, EISSENS D, et al. High log-scale expansion of functional human natural killer cells from umbilical cord blood CD34-positive cells for adoptive cancer immunotherapy[J]. PloS One,2010,5(2):e9221.

所在学位评定分委会
医学院
国内图书分类号
Q939.91
来源库
人工提交
成果类型学位论文
条目标识符//www.snoollab.com/handle/2SGJ60CL/343010
专题医学院
推荐引用方式
GB/T 7714
苏旭. 人组织 CXCR6+ NK细胞的表型功能鉴定及其体外扩增[D]. 深圳. ,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930116-苏旭-医学(5818KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[苏旭]的文章
百度学术
百度学术中相似的文章
[苏旭]的文章
必应学术
必应学术中相似的文章
[苏旭]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map