[1] SARAVANAN A, SENTHIL KUMAR P, JEEVANANTHAM S, et al. Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development[J]. Chemosphere, 2021, 280: 130595.
[2] KIRAN MARELLA T, SAXENA A, TIWARI A. Diatom mediated heavy metal remediation: A review[J]. Bioresource Technology, 2020, 305: 123068.
[3] PENG W, LI X, XIAO S, et al. Review of remediation technologies for sediments contaminated by heavy metals[J]. Journal of Soils and Sediments, 2018, 18(4): 1701-19.
[4] JOSEPH L, JUN B-M, FLORA J R V, et al. Removal of heavy metals from water sources in the developing world using low-cost materials: A review[J]. Chemosphere, 2019, 229: 142-159.
[5] 周秀英, 韩晓燕, 罗欢. 水体重金属污染概况及其治理技术研究进展[J]. 广东化工, 2021, 48(19): 128+41.
[6] LI H, DONG X, DA SILVA E B, et al. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications[J]. Chemosphere, 2017, 178: 466-478.
[7] 洪亚军, 冯承莲, 徐祖信, 等. 重金属对水生生物的毒性效应机制研究进展[J]. 环境工程, 2019, 37(11): 1-9.
[8] MALIK L A, BASHIR A, QUREASHI A, et al. Detection and removal of heavy metal ions: a review[J]. Environmental Chemistry Letters, 2019, 17(4): 1495-1521.
[9] SHERLALA A I A, RAMAN A A A, BELLO M M, et al. A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption[J]. Chemosphere, 2018, 193: 1004-1017.
[10] AHMED W, MEHMOOD S, NúñEZ-DELGADO A, et al. Enhanced adsorption of aqueous Pb(II) by modified biochar produced through pyrolysis of watermelon seeds[J]. Science of The Total Environment, 2021, 784: 147136.
[11] DU Q, ZHANG S, SONG J, et al. Activation of porous magnetized biochar by artificial humic acid for effective removal of lead ions[J]. Journal of Hazardous Materials, 2020, 389: 122115.
[12] ASERE T G, STEVENS C V, DU LAING G. Use of (modified) natural adsorbents for arsenic remediation: A review[J]. Science of the Total Environment, 2019, 676: 706-720.
[13] SAJJADI S A, MEKNATI A, LIMA E C, et al. A novel route for preparation of chemically activated carbon from pistachio wood for highly efficient Pb(II) sorption[J]. Journal of Environmental Management, 2019, 236: 34-44.
[14] WU J, LU J, ZHANG C, et al. Pollution, sources, and risks of heavy metals in coastal waters of China[J]. Human and Ecological Risk Assessment: An International Journal, 2020, 26(8): 2011-2026.
[15] 黄大伟, 郑文丽, 冯立师, et al. 突发水环境重金属污染事件溯源方法与应用案例[J]. 环境工程学报, 2021, 15(07): 2239-2244.
[16] 朱春雁, 任晓晶, 白雪. 重金属废水处理与回用技术评价系列国家标准解析[J]. 标准科学, 2021, (08): 101-106.
[17] 安子怡, 王亚平, 许春雪, 等. 欧盟RoHS指令与中国的对策[J]. 岩矿测试, 2008, (06): 441-450.
[18] 黄彦锋, 郑继亮, 杨进昌, 等. 腐植酸在重金属污染土壤修复中的研究进展[J]. 腐植酸, 2021, (03): 54-60.
[19] 郭健, 姚云, 赵小旭, 等. 粮食中重金属铅离子、镉离子的污染现状及对人体的危害[J]. 粮食科技与经济, 2018, 43(03): 33-5+85.
[20] 李争显, 李伟, JIAJUN L, 等. 常见金属元素对人体的作用及危害[J]. 中国材料进展, 2020, 39(12): 934-44.
[21] 毛治超, 李阳, 李会茹, 等. 贵屿及其上下游沉积物中23种金属元素的污染特征、来源和风险[J]. 地球化学, 2021, 50(05): 513-524.
[22] 张坤, 罗书. 水体重金属污染治理技术研究进展[J]. 中国环境管理干部学院学报, 2010, 20(03): 62-64+81.
[23] GANZOURY M A, CHIDIAC C, KURTZ J, et al. CNT-sorbents for heavy metals: Electrochemical regeneration and closed-loop recycling[J]. Journal of Hazardous Materials, 2020, 393: 122432.
[24] 何智奇, 张捷, 崔怡观, 等. 重金属污染底泥的固定化/稳定化应用研究[J]. 环境保护前沿, 2018, 8(3): 258-270.
[25] XUE W, HUANG D, ZENG G, et al. Nanoscale zero-valent iron coated with rhamnolipid as an effective stabilizer for immobilization of Cd and Pb in river sediments[J]. Journal of Hazardous Materials, 2018, 341: 381-389.
[26] 郭燕妮, 方增坤, 胡杰华, 等. 化学沉淀法处理含重金属废水的研究进展[J]. 工业水处理, 2011, 31(12): 9-13.
[27] ZHANG Y, DUAN X M. Chemical precipitation of heavy metals from wastewater by using the synthetical magnesium hydroxy carbonate[J]. Water Science and Technology, 2020, 81(6): 1130-6.
[28] AZIMI A, AZARI A, REZAKAZEMI M, et al. Removal of heavy metals from industrial wastewaters: A review[J]. Chembioeng Reviews, 2017, 4(1): 37-59.
[29] 聂发辉, 刘荣荣, 张慧敏, 等. 工业废水中镍的去除与回收技术及相关研究进展[J]. 水处理技术, 2015, 41(11): 7-15.
[30] 李博文, 杨桂锦. 重金属废水处理技术研究进展[J]. 中国资源综合利用, 2021, 39(11): 87-92.
[31] FU F L, WANG Q. Removal of heavy metal ions from wastewaters: A review[J]. Journal of Environmental Management, 2011, 92(3): 407-418.
[32] RENU, AGARWAL M, SINGH K. Heavy metal removal from wastewater using various adsorbents: a review[J]. Journal of Water Reuse and Desalination, 2017, 7(4): 387-419.
[33] 朱坤娥, 王海北, 李艳荣, 等. 铅锌冶炼重金属废水处理技术研究进展[J]. 中国资源综合利用, 2015, 33(04): 31-33.
[34] 张传雷, 孙南南, 谢实涛, 等. 重金属废水处理技术和资源化概述[J]. 现代化工, 2014, 34(04): 38-41.
[35] CHAI W S, CHEUN J Y, KUMAR P S, et al. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application[J]. Journal of Cleaner Production, 2021, 296: 126589.
[36] JAWED A, SAXENA V, PANDEY L M. Engineered nanomaterials and their surface functionalization for the removal of heavy metals: A review[J]. Journal of Water Process Engineering, 2020, 33: 101009.
[37] PYRZYNSKA K. Removal of cadmium from wastewaters with low-cost adsorbents[J]. Journal of Environmental Chemical Engineering, 2019, 7(1): 9.
[38] YAP P L, NINE J, HASSAN K, et al. Graphene-based sorbents for multipollutants removal in water: A review of recent progress[J]. Advanced Functional Materials, 2020.
[39] XU J, CAO Z, ZHANG Y, et al. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism[J]. Chemosphere, 2018, 195: 351-64.
[40] HUA M, ZHANG S, PAN B, et al. Heavy metal removal from water/wastewater by nanosized metal oxides: A review[J]. Journal of Hazardous Materials, 2012, 211-212: 317-331.
[41] XU G-R, AN Z-H, XU K, et al. Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal: The cutting-edge study on designs, synthesis, and applications[J]. Coordination Chemistry Reviews, 2021, 427: 213554.
[42] SHAIKH T M A. Adsorption of Pb(II) from wastewater by natural and synthetic adsorbents[J]. Biointerface Research in Applied Chemistry, 2020, 10(5): 6522-6539.
[43] ZHAO M, XU Y, ZHANG C, et al. New trends in removing heavy metals from wastewater[J]. Applied Microbiology and Biotechnology, 2016, 100(15): 6509-6518.
[44] 李文清, 邹萍. 粉煤灰吸附废水中重金属的研究现状与进展[J]. 工业水处理: 1-15.
[45] VISA M, CHELARU A-M. Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment[J]. Applied Surface Science, 2014, 303: 14-22.
[46] OLADOJA N A, OLOLADE I A, ALIMI O A, et al. Iron incorporated rice husk silica as a sorbent for hexavalent chromium attenuation in aqueous system[J]. Chemical Engineering Research and Design, 2013, 91(12): 2691-2702.
[47] KAYA K, PEHLIVAN E, SCHMIDT C, et al. Use of modified wheat bran for the removal of chromium(VI) from aqueous solutions[J]. Food Chemistry, 2014, 158: 112-117.
[48] PETTINATO M, CHAKRABORTY S, ARAFAT H A, et al. Eggshell: A green adsorbent for heavy metal removal in an MBR system[J]. Ecotoxicology and Environmental Safety, 2015, 121: 57-62.
[49] DU Y, LIAN F, ZHU L. Biosorption of divalent Pb, Cd and Zn on aragonite and calcite mollusk shells[J]. Environmental Pollution, 2011, 159(7): 1763-1768.
[50] ZHONG G, LIU Y, TANG Y. Oyster shell powder for Pb(II) immobilization in both aquatic and sediment environments[J]. Environmental Geochemistry and Health, 2020,43(5): 1891-1902.
[51] SHAKOOR M B, ALI S, RIZWAN M, et al. A review of biochar-based sorbents for separation of heavy metals from water[J]. International Journal of Phytoremediation, 2020, 22(2): 111-126.
[52] PATRA B R, MUKHERJEE A, NANDA S, et al. Biochar production, activation and adsorptive applications: a review[J]. Environmental Chemistry Letters, 2021 ,19(3): 2237-2259.
[53] LEE M-E, PARK J H, CHUNG J W. Comparison of the lead and copper adsorption capacities of plant source materials and their biochars[J]. Journal of Environmental Management, 2019, 236: 118-124.
[54] ANASTOPOULOS I, BHATNAGAR A, HAMEED B H, et al. A review on waste-derived adsorbents from sugar industry for pollutant removal in water and wastewater[J]. Journal of Molecular Liquids, 2017, 240: 179-188.
[55] WANG F, JIN L, GUO C, et al. Enhanced heavy metals sorption by modified biochars derived from pig manure[J]. Science of The Total Environment, 2021, 786: 147595.
[56] BARDESTANI R, ROY C, KALIAGUINE S. The effect of biochar mild air oxidation on the optimization of lead(II) adsorption from wastewater[J]. Journal of Environmental Management, 2019, 240: 404-420.
[57] ZHOU Q, LIAO B, LIN L, et al. Adsorption of Cu(II) and Cd(II) from aqueous solutions by ferromanganese binary oxide–biochar composites[J]. Science of The Total Environment, 2018, 615: 115-122.
[58] SIZMUR T, FRESNO T, AKGüL G, et al. Biochar modification to enhance sorption of inorganics from water[J]. Bioresource Technology, 2017, 246: 34-47.
[59] DING Z, HU X, WAN Y, et al. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests[J]. Journal of Industrial and Engineering Chemistry, 2016, 33: 239-245.
[60] PENG H, GAO P, CHU G, et al. Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars[J]. Environmental Pollution, 2017, 229: 846-853.
[61] ZHOU Y, GAO B, ZIMMERMAN A R, et al. Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions[J]. Bioresource Technology, 2014, 152: 538-542.
[62] 高海荣, 姜明月, 黄振旭, 等. 磁性黑藻生物炭复合材料的制备及其对水体Cu2+的吸附[J]. 化工新型材料, 2021, 49(10): 186-90.
[63] ATA A, NALCACI O O, OVEZ B. Macro algae Gracilaria verrucosa as a biosorbent: A study of sorption mechanisms[J]. Algal Research, 2012, 1(2): 194-204.
[64] DUAN X, CHEN Y, YAN Y, et al. New method for algae comprehensive utilization: Algae-derived biochar enhances algae anaerobic fermentation for short-chain fatty acids production[J]. Bioresource Technology, 2019, 289: 121637.
[65] CHEN Y, WANG B, XIN J, et al. Adsorption behavior and mechanism of Cr(VI) by modified biochar derived from Enteromorpha prolifera[J]. Ecotoxicology and Environmental Safety, 2018, 164: 440-447.
[66] 孙文, 张国琛, 李秀辰, et al. 浒苔资源利用的研究进展及应用前景[J]. 水产科学, 2011, 30(09): 588-590.
[67] BIRD M I, WURSTER C M, DE PAULA SILVA P H, et al. Algal biochar: effects and applications[J]. GCB Bioenergy, 2012, 4(1): 61-69.
[68] YU K L, LAU B F, SHOW P L, et al. Recent developments on algal biochar production and characterization[J]. Bioresource Technology, 2017, 246: 2-11.
[69] BIRD M I, WURSTER C M, DE PAULA SILVA P H, et al. Algal biochar – production and properties[J]. Bioresource Technology, 2011, 102(2): 1886-1891.
[70] SON E-B, POO K-M, CHANG J-S, et al. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass[J]. Science of The Total Environment, 2018, 615: 161-168.
[71] LEVITAN O, DINAMARCA J, HOCHMAN G, et al. Diatoms: a fossil fuel of the future[J]. Trends in Biotechnology, 2014, 32(3): 117-124.
[72] BARROS A I, GONçALVES A L, SIMõES M, et al. Harvesting techniques applied to microalgae: A review[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 1489-1500.
[73] RAMOS TERCERO E A, SFORZA E, BERTUCCO A. Energy profitability analysis for microalgal biocrude production[J]. Energy, 2013, 60: 373-379.
[74] NURACHMAN Z, BRATANINGTYAS D S, HARTATI, et al. Oil from the Tropical Marine Benthic-Diatom Navicula sp[J]. Applied Biochemistry and Biotechnology, 2012, 168(5): 1065-1075.
[75] SARANYA G, RAMACHANDRA T V. Novel biocatalyst for optimal biodiesel production from diatoms[J]. Renewable Energy, 2020, 153: 919-934.
[76] MAEDA Y, NOJIMA D, YOSHINO T, et al. Structure and properties of oil bodies in diatoms[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2017, 372(1728): 16.
[77] MARELLA T K, PARINE N R, TIWARI A. Potential of diatom consortium developed by nutrient enrichment for biodiesel production and simultaneous nutrient removal from waste water[J]. Saudi Journal of Biological Sciences, 2018, 25(4): 704-709.
[78] RAMACHANDRA T V, MAHAPATRA D M, B K, et al. Milking Diatoms for Sustainable Energy: Biochemical Engineering versus Gasoline-Secreting Diatom Solar Panels[J]. Industrial & Engineering Chemistry Research, 2009, 48(19): 8769-8788.
[79] BRENNAN L, OWENDE P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products[J]. Renewable and Sustainable Energy Reviews, 2010, 14(2): 557-577.
[80] LEE X J, ONG H C, OOI J, et al. Engineered macroalgal and microalgal adsorbents: Synthesis routes and adsorptive performance on hazardous water contaminants[J]. Journal of Hazardous Materials, 2022, 423: 126921.
[81] GRIFFITH A W, GOBLER C J. Harmful algal blooms: A climate change co-stressor in marine and freshwater ecosystems[J]. Harmful Algae, 2020, 91: 101590.
[82] RAZMJOO A, GAKENIA KAIGUTHA L, VAZIRI RAD M A, et al. A Technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO2 emissions in a high potential area[J]. Renewable Energy, 2021, 164: 46-57.
[83] NAUTIYAL P, SUBRAMANIAN K A, DASTIDAR M G. Experimental investigation on adsorption properties of biochar derived from algae biomass residue of biodiesel production[J]. Environmental Processes, 2017, 4(S1): 179-193.
[84] FRUTOS I, GARCíA-DELGADO C, GáRATE A, et al. Biosorption of heavy metals by organic carbon from spent mushroom substrates and their raw materials[J]. 2016, 13(11): 2713-2720.
[85] ZHANG J, DING T, ZHANG Z, et al. Enhanced adsorption of trivalent arsenic from water by functionalized diatom silica shells[J]. PLOS ONE, 2015, 10(4): e0123395.
[86] YANG Q, GONG L, HUANG L, et al. Adsorption of As(V) from aqueous solution on chitosan-modified diatomite[J]. International Journal of Environmental Research and Public Health, 2020, 17(2): 429.
[87] MA R, YANG Y, ZHANG X, et al. Preparation and optimization of diatom-based cadmium ion-imprinted materials[J]. Journal of Molecular Structure, 2022, 1251: 132044.
[88] QI Y, WANG J, WANG X, et al. Selective adsorption of Pb(II) from aqueous solution using porous biosilica extracted from marine diatom biomass: Properties and mechanism[J]. Applied Surface Science, 2017, 396: 965-977.
[89] GUTIéRREZ MORENO J J, PAN K, WANG Y, et al. Computational Study of APTES Surface Functionalization of Diatom-like Amorphous SiO2 Surfaces for Heavy Metal Adsorption[J]. Langmuir, 2020 ,36(20):5680-5689.
[90] YU Y, ADDAI-MENSAH J, LOSIC D. Functionalized diatom silica microparticles for removal of mercury ions[J]. Science and Technology of Advanced Materials, 2012, 13(1): 015008.
[91] GAO X, GUO C, HAO J, et al. Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives[J]. International Journal of Biological Macromolecules, 2020, 164: 4423-4434.
[92] VIJAYA Y, POPURI S R, BODDU V M, et al. Modified chitosan and calcium alginate biopolymer sorbents for removal of nickel (II) through adsorption[J]. Carbohydrate Polymers, 2008, 72(2): 261-271.
[93] CHING S H, BANSAL N, BHANDARI B. Alginate gel particles–A review of production techniques and physical properties[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(6): 1133-1152.
[94] WANG B, WAN Y, ZHENG Y, et al. Alginate-based composites for environmental applications: a critical review[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(4): 318-356.
[95] PAPAGEORGIOU S K, KATSAROS F K, KOUVELOS E P, et al. Prediction of binary adsorption isotherms of Cu2+, Cd2+ and Pb2+ on calcium alginate beads from single adsorption data[J]. Journal of Hazardous Materials, 2009, 162(2): 1347-1354.
[96] YANG J-S, XIE Y-J, HE W. Research progress on chemical modification of alginate: A review[J]. Carbohydrate Polymers, 2011, 84(1): 33-39.
[97] MOURPICHAI A, JINTAKOSOL T, NITAYAPHAT W. Adsorption of gold ion from a solution using montmorillonite/alginate composite[J]. Materials Today: Proceedings, 2018, 5(7): 14786-14792.
[98] HONG H-J, KIM B-G, RYU J, et al. Preparation of highly stable zeolite-alginate foam composite for strontium(90Sr) removal from seawater and evaluation of Sr adsorption performance[J]. Journal of Environmental Management, 2018, 205: 192-200.
[99] ROH H, YU M-R, YAKKALA K, et al. Removal studies of Cd(II) and explosive compounds using buffalo weed biochar-alginate beads[J]. Journal of Industrial and Engineering Chemistry, 2015, 26: 226-33.
[100] WANG B, GAO B, WAN Y. Entrapment of ball-milled biochar in Ca-alginate beads for the removal of aqueous Cd(II)[J]. Journal of Industrial and Engineering Chemistry, 2018, 61: 161-168.
[101] WANG B, GAO B, ZIMMERMAN A R, et al. Impregnation of multiwall carbon nanotubes in alginate beads dramatically enhances their adsorptive ability to aqueous methylene blue[J]. Chemical Engineering Research and Design, 2018, 133: 235-242.
[102] LI Y, LIU F, XIA B, et al. Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites[J]. Journal of Hazardous Materials, 2010, 177(1): 876-880.
[103] ZHUANG Y, YU F, CHEN H, et al. Alginate/graphene double-network nanocomposite hydrogel beads with low-swelling, enhanced mechanical properties, and enhanced adsorption capacity[J]. Journal of Materials Chemistry A, 2016, 4(28): 10885-10892.
[104] JIAO C, XIONG J, TAO J, et al. Sodium alginate/graphene oxide aerogel with enhanced strength–toughness and its heavy metal adsorption study[J]. International Journal of Biological Macromolecules, 2016, 83: 133-141.
[105] BéE A, TALBOT D, ABRAMSON S, et al. Magnetic alginate beads for Pb(II) ions removal from wastewater[J]. Journal of Colloid and Interface Science, 2011, 362(2): 486-492.
[106] IDRIS A, ISMAIL N S M, HASSAN N, et al. Synthesis of magnetic alginate beads based on maghemite nanoparticles for Pb(II) removal in aqueous solution [J]. Journal of Industrial and Engineering Chemistry, 2012, 18(5): 1582-1589.
[107] SU C, SUN X, MU Y, et al. Multilayer calcium alginate beads containing Diatom Biosilica and Bacillus subtilis as microecologics for sewage treatment[J]. Carbohydrate Polymers, 2021, 256: 117603.
[108] SAMUEL J, PULIMI M, PAUL M L, et al. Batch and continuous flow studies of adsorptive removal of Cr(VI) by adapted bacterial consortia immobilized in alginate beads[J]. Bioresource Technology, 2013, 128: 423-430.
[109] BAYRAMOĞLU G, YAKUP ARıCA M. Construction a hybrid biosorbent using Scenedesmus quadricauda and Ca-alginate for biosorption of Cu(II), Zn(II) and Ni(II): Kinetics and equilibrium studies[J]. Bioresource Technology, 2009, 100(1): 186-193.
[110] BARQUILHA C E R, COSSICH E S, TAVARES C R G, et al. Biosorption of nickel(II) and copper(II) ions from synthetic and real effluents by alginate-based biosorbent produced from seaweed Sargassum sp[J]. Environmental Science and Pollution Research, 2019, 26(11): 11100-11112.
[111] DO X-H, LEE B-K. Removal of Pb2+ using a biochar–alginate capsule in aqueous solution and capsule regeneration[J]. Journal of Environmental Management, 2013, 131: 375-382.
[112] ATES B, KOYTEPE S, ULU A, et al. Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources[J]. Chemical Reviews, 2020, 120(17): 9304-9362.
[113] GAO X, ZHANG Y, ZHAO Y. Biosorption and reduction of Au (III) to gold nanoparticles by thiourea modified alginate[J]. Carbohydrate Polymers, 2017, 159: 108-115.
[114] WANG F, LU X, LI X-Y. Selective removals of heavy metals (Pb2+, Cu2+, and Cd2+) from wastewater by gelation with alginate for effective metal recovery[J]. Journal of Hazardous Materials, 2016, 308: 75-83.
[115] WANG J-K, SEIBERT M. Prospects for commercial production of diatoms[J]. Biotechnology for Biofuels, 2017, 10:16.
[116] SAXENA A, MARELLA T K, SINGH P K, et al. Indoor mass cultivation of marine diatoms for biodiesel production using induction plasma synthesized nanosilica[J]. Bioresource Technology, 2021, 332: 8.
[117] JAYAKUMAR S, BHUYAR P, PUGAZHENDHI A, et al. Effects of light intensity and nutrients on the lipid content of marine microalga (diatom) Amphiprora sp. for promising biodiesel production[J]. Science of The Total Environment, 2021, 768: 145471.
[118] WANG Y, XIAO X, XU Y, et al. Environmental effects of silicon within biochar (sichar) and carbon–silicon coupling mechanisms: A critical review[J]. Environmental Science & Technology, 2019, 53(23): 13570-13582.
[119] GENDRON-BADOU A C, CORADIN T, MAQUET J, et al. Spectroscopic characterization of biogenic silica[J]. Journal of Non-Crystalline Solids, 2003, 316(2-3): 331-337.
[120] WANG Y, XIAO X, CHEN B. Biochar Impacts on Soil Silicon Dissolution Kinetics and their Interaction Mechanisms[J]. Scientific Reports, 2018, 8(1): 8040.
[121] TOFFOLO M, REGEV L, DUBERNET S, et al. FTIR-based crystallinity assessment of aragonite–calcite mixtures in archaeological lime binders altered by diagenesis[J]. Minerals, 2019, 9(2): 121.
[122] LI J, LI Y, WU Y, et al. A comparison of biochars from lignin, cellulose and wood as the sorbent to an aromatic pollutant[J]. Journal of Hazardous Materials, 2014, 280: 450-457.
[123] XU Y, CHEN B. Organic carbon and inorganic silicon speciation in rice-bran-derived biochars affect its capacity to adsorb cadmium in solution [J]. Journal of Soils and Sediments, 2015, 15(1): 60-70.
[124] PARK J-H, OK Y S, KIM S-H, et al. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions[J]. Chemosphere, 2016, 142: 77-83.
[125] GAO L, LI Z H, YI W M, et al. Impacts of pyrolysis temperature on lead adsorption by cotton stalk-derived biochar and related mechanisms[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 14.
[126] CAO Y, SHEN G, ZHANG Y, et al. Impacts of carbonization temperature on the Pb(II) adsorption by wheat straw-derived biochar and related mechanism [J]. Science of The Total Environment, 2019, 692: 479-489.
[127] ZHANG T, ZHU X, SHI L, et al. Efficient removal of lead from solution by celery-derived biochars rich in alkaline minerals[J]. Bioresource Technology, 2017, 235: 185-192.
[128] HU Z-T, DING Y, SHAO Y, et al. Banana peel biochar with nanoflake-assembled structure for cross contamination treatment in water: Interaction behaviors between lead and tetracycline[J]. Chemical Engineering Journal, 2021, 420: 129807.
[129] LIU R, GUAN Y, CHEN L, et al. Adsorption and desorption characteristics of Cd2+ and Pb2+ by micro and nano-sized biogenic CaCO3[J]. Frontiers in Microbiology, 2018, 9.
[130] BOZBAŞ S K, BOZ Y. Low-cost biosorbent: Anadara inaequivalvis shells for removal of Pb(II) and Cu(II) from aqueous solution[J]. Process Safety and Environmental Protection, 2016, 103: 144-152.
[131] SOOKSAWAT N, MEETAM M, KRUATRACHUE M, et al. Equilibrium and kinetic studies on biosorption potential of charophyte biomass to remove heavy metals from synthetic metal solution and municipal wastewater[J]. Bioremediation Journal, 2016, 20(3): 240-251.
[132] 杜恩菊, 李杨, 冯伟, 等. 丝瓜络固定颤藻吸附Pb2+的动力学及机理[J]. 中国环境科学, 2021, 41(12): 5701-5709.
修改评论