题名 | Highly Conducting and Stretchable Double-Network Hydrogel for Soft Bioelectronics |
作者 | |
通讯作者 | Guo, Chuan Fei |
共同第一作者 | Li, Gang; Huang, Kaixi; Deng, Jue |
发表日期 | 2022-03-01
|
DOI | |
发表期刊 | |
ISSN | 0935-9648
|
EISSN | 1521-4095
|
卷号 | 34 |
摘要 | Conducting polymer hydrogels are promising materials in soft bioelectronics because of their tissue-like mechanical properties and the capability of electrical interaction with tissues. However, it is challenging to balance electrical conductivity and mechanical stretchability: pure conducting polymer hydrogels are highly conductive, but they are brittle; while incorporating the conducting network with a soft network to form a double network can improve the stretchability, its electrical conductivity significantly decreases. Here, the problem is addressed by concentrating a poorly crosslinked precursor hydrogel with a high content ratio of the conducting polymer to achieve a densified double-network hydrogel (5.5 wt% conducting polymer), exhibiting both high electrical conductivity (approximate to 10 S cm(-1)) and a large fracture strain (approximate to 150%), in addition to high biocompatibility, tissue-like softness, low swelling ratio, and desired electrochemical properties for bioelectronics. A surface grafting method is further used to form an adhesive layer on the conducting hydrogel, enabling robust and rapid bonding on the tissues. Furthermore, the proposed hydrogel is applied to show high-quality physiological signal recording and reliable, low-voltage electrical stimulation based on an in vivo rat model. This method provides an ideal strategy for rapid and reliable tissue-device integration with high-quality electrical communications. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
重要成果 | NI期刊
; ESI高被引
; NI论文
|
学校署名 | 第一
; 共同第一
; 通讯
|
资助项目 | National Natural Science Foundation of China[52073138]
; Guangdong Innovative and Entrepreneurial Research Team Program[2016ZT06G587]
; Science Technology and Innovation Committee of Shenzhen Municipality[JCYJ20210324120202007]
; Shenzhen Sci-Tech Fund[KYTDPT20181011104007]
|
WOS研究方向 | Chemistry
; Science & Technology - Other Topics
; Materials Science
; Physics
|
WOS类目 | Chemistry, Multidisciplinary
; Chemistry, Physical
; Nanoscience & Nanotechnology
; Materials Science, Multidisciplinary
; Physics, Applied
; Physics, Condensed Matter
|
WOS记录号 | WOS:000765326800001
|
出版者 | |
EI入藏号 | 20221011752103
|
EI主题词 | Adhesives
; Biocompatibility
; Biomechanics
; Electric conductivity
; Histology
; Hydrogels
; Physiological models
; Swelling
; Tissue
|
EI分类号 | Biological Materials and Tissue Engineering:461.2
; Biomechanics, Bionics and Biomimetics:461.3
; Immunology:461.9.1
; Electricity: Basic Concepts and Phenomena:701.1
; Conducting Materials:708.2
; Colloid Chemistry:801.3
; Chemical Products Generally:804
; Polymeric Materials:815.1
; Materials Science:951
|
ESI学科分类 | MATERIALS SCIENCE
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:175
|
成果类型 | 期刊论文 |
条目标识符 | //www.snoollab.com/handle/2SGJ60CL/296803 |
专题 | 工学院_材料科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China 2.MIT, Dept Mech Engn, Cambridge, MA 02139 USA |
第一作者单位 | 材料科学与工程系 |
通讯作者单位 | 材料科学与工程系 |
第一作者的第一单位 | 材料科学与工程系 |
推荐引用方式 GB/T 7714 |
Li, Gang,Huang, Kaixi,Deng, Jue,et al. Highly Conducting and Stretchable Double-Network Hydrogel for Soft Bioelectronics[J]. ADVANCED MATERIALS,2022,34.
|
APA |
Li, Gang.,Huang, Kaixi.,Deng, Jue.,Guo, Mengxue.,Cai, Minkun.,...&Guo, Chuan Fei.(2022).Highly Conducting and Stretchable Double-Network Hydrogel for Soft Bioelectronics.ADVANCED MATERIALS,34.
|
MLA |
Li, Gang,et al."Highly Conducting and Stretchable Double-Network Hydrogel for Soft Bioelectronics".ADVANCED MATERIALS 34(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论