中文版 | English
题名

PATH-CONSERVATIVE CENTRAL-UPWIND SCHEMES FOR NONCONSERVATIVE HYPERBOLIC SYSTEMS

作者
通讯作者Kurganov, Alexander
发表日期
2019-06-21
DOI
发表期刊
ISSN
0764-583X
EISSN
1290-3841
卷号53期号:3页码:959-985
摘要
We develop path-conservative central-upwind schemes for nonconservative one-dimensional hyperbolic systems of nonlinear partial differential equations. Such systems arise in a variety of applications and the most challenging part of their numerical discretization is a robust treatment of nonconservative product terms. Godunov-type central-upwind schemes were developed as an efficient, highly accurate and robust "black-box" solver for hyperbolic systems of conservation and balance laws. They were successfully applied to a large number of hyperbolic systems including several nonconservative ones. To overcome the difficulties related to the presence of nonconservative product terms, several special techniques were proposed. However, none of these techniques was sufficiently robust and thus the applicability of the original central-upwind schemes was rather limited. In this paper, we rewrite the central-upwind schemes in the form of path-conservative schemes. This helps us (i) to show that the main drawback of the original central-upwind approach was the fact that the jump of the nonconservative product terms across cell interfaces has never been taken into account and (ii) to understand how the nonconservative products should be discretized so that their influence on the numerical solution is accurately taken into account. The resulting path-conservative central-upwind scheme is a new robust tool for both conservative and nonconservative hyperbolic systems. We apply the new scheme to the Saint-Venant system with discontinuous bottom topography and two-layer shallow water system. Our numerical results illustrate the good performance of the new path-conservative central-upwind scheme, its robustness and ability to achieve very high resolution.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
NSF[DMS-1521009] ; NSF[DMS-1818666]
WOS研究方向
Mathematics
WOS类目
Mathematics, Applied
WOS记录号
WOS:000475769100002
出版者
EI入藏号
20192807155282
EI主题词
Equations of motion ; Partial differential equations ; Topography
EI分类号
Calculus:921.2 ; Materials Science:951
ESI学科分类
MATHEMATICS
来源库
Web of Science
引用统计
被引频次[WOS]:25
成果类型期刊论文
条目标识符//www.snoollab.com/handle/2SGJ60CL/25666
专题理学院_数学系
工学院_材料科学与工程系
作者单位
1.Univ Malaga, Dept Anal Matemat, Malaga 29080, Spain
2.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China
3.Tulane Univ, Math Dept, New Orleans, LA 70118 USA
4.Univ Cordoba, Dept Matemat, Campus Rabanales, E-14071 Cordoba, Spain
通讯作者单位数学系
推荐引用方式
GB/T 7714
Castro Diaz, Manuel Jesus,Kurganov, Alexander,Morales de Luna, Tomas. PATH-CONSERVATIVE CENTRAL-UPWIND SCHEMES FOR NONCONSERVATIVE HYPERBOLIC SYSTEMS[J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE,2019,53(3):959-985.
APA
Castro Diaz, Manuel Jesus,Kurganov, Alexander,&Morales de Luna, Tomas.(2019).PATH-CONSERVATIVE CENTRAL-UPWIND SCHEMES FOR NONCONSERVATIVE HYPERBOLIC SYSTEMS.ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE,53(3),959-985.
MLA
Castro Diaz, Manuel Jesus,et al."PATH-CONSERVATIVE CENTRAL-UPWIND SCHEMES FOR NONCONSERVATIVE HYPERBOLIC SYSTEMS".ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE 53.3(2019):959-985.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Castro Diaz, Manuel Jesus]的文章
[Kurganov, Alexander]的文章
[Morales de Luna, Tomas]的文章
百度学术
百度学术中相似的文章
[Castro Diaz, Manuel Jesus]的文章
[Kurganov, Alexander]的文章
[Morales de Luna, Tomas]的文章
必应学术
必应学术中相似的文章
[Castro Diaz, Manuel Jesus]的文章
[Kurganov, Alexander]的文章
[Morales de Luna, Tomas]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map