中文版 | English
题名

A novel MM algorithm and the mode-sharing method in Bayesian computation for the analysis of general incomplete categorical data

作者
通讯作者Liu, Yin
发表日期
2019-12
DOI
发表期刊
ISSN
0167-9473
EISSN
1872-7352
卷号140页码:122-143
摘要

Incomplete categorical data often occur in the fields such as biomedicine, epidemiology, psychology, sports and so on. In this paper, we first introduce a novel minorization-maximization (MM) algorithm to calculate the maximum likelihood estimates (MLEs) of parameters and the posterior modes for the analysis of general incomplete categorical data. Although the data augmentation (DA) algorithm and Gibbs sampling as the corresponding stochastic counterparts of the expectation-maximization (EM) and ECM algorithms are developed very well, up to now, little work has been done on creating stochastic versions to the existing MM algorithms. This is the first paper to propose a mode-sharing method in Bayesian computation for general incomplete categorical data by developing a new acceptance-rejection (AR) algorithm aided with the proposed MM algorithm. The key idea is to construct a class of envelope densities indexed by a working parameter and to identify a specific envelope density which can overcome the four drawbacks associated with the traditional AR algorithm. The proposed mode-sharing based AR algorithm has three significant characteristics: (I) it can automatically establish a family of envelope densities {g(lambda)(.): lambda is an element of S-lambda} indexed by a working parameter lambda, where each member in the family shares mode with the posterior density; (II) with the onedimensional grid method searching over the finite interval S-lambda,S- it can identify an optimal working parameter lambda(opt) by maximizing the theoretical acceptance probability, yielding a best easy-sampling envelope density g lambda(opt) (.), which is more dispersive than the posterior density; (III) it can obtain the optimal envelope constant c(opt) by using the mode-sharing theorem (indicating that the high-dimensional optimization can be completely avoided) or by using the proposed MM algorithm again. Finally, a toy model and three real data sets are used to illustrate the proposed methodologies. (C) 2019 Published by Elsevier B.V.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
资助项目
Research Grant Council of the Hong Kong Special Administrative Region, China[UGC/FDS14/P01/14] ; Research Grant Council of the Hong Kong Special Administrative Region, China[UGC/FDS14/P01/16]
WOS研究方向
Computer Science ; Mathematics
WOS类目
Computer Science, Interdisciplinary Applications ; Statistics & Probability
WOS记录号
WOS:000478704800008
出版者
EI入藏号
20192707142735
EI主题词
Bayesian networks ; Clustering algorithms ; Computation theory ; Maximum likelihood estimation ; Optimization ; Stochastic systems
EI分类号
Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Information Sources and Analysis:903.1 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Optimization Techniques:921.5 ; Statistical Methods:922 ; Systems Science:961
ESI学科分类
MATHEMATICS
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符//www.snoollab.com/handle/2SGJ60CL/25063
专题理学院_数学系
工学院_材料科学与工程系
作者单位
1.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Guangdong, Peoples R China
2.Zhongnan Univ Econ & Law, Sch Math & Stat, Wuhan 430073, Hubei, Peoples R China
3.Hang Seng Univ Hong Kong, Sch Decis Sci, Dept Math & Stat, Siu Lek Yuen,Shatin, Hong Kong, Peoples R China
第一作者单位数学系
第一作者的第一单位数学系
推荐引用方式
GB/T 7714
Tian, Guo-Liang,Liu, Yin,Tang, Man-Lai,et al. A novel MM algorithm and the mode-sharing method in Bayesian computation for the analysis of general incomplete categorical data[J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS,2019,140:122-143.
APA
Tian, Guo-Liang,Liu, Yin,Tang, Man-Lai,&Li, Tao.(2019).A novel MM algorithm and the mode-sharing method in Bayesian computation for the analysis of general incomplete categorical data.COMPUTATIONAL STATISTICS & DATA ANALYSIS,140,122-143.
MLA
Tian, Guo-Liang,et al."A novel MM algorithm and the mode-sharing method in Bayesian computation for the analysis of general incomplete categorical data".COMPUTATIONAL STATISTICS & DATA ANALYSIS 140(2019):122-143.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Tian-2019-A novel MM(1749KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tian, Guo-Liang]的文章
[Liu, Yin]的文章
[Tang, Man-Lai]的文章
百度学术
百度学术中相似的文章
[Tian, Guo-Liang]的文章
[Liu, Yin]的文章
[Tang, Man-Lai]的文章
必应学术
必应学术中相似的文章
[Tian, Guo-Liang]的文章
[Liu, Yin]的文章
[Tang, Man-Lai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map