中文版 | English
题名

Insider Threat Risk Prediction based on Bayesian Network

作者
通讯作者Elmrabit,Nebrase
发表日期
2020-09-01
DOI
发表期刊
ISSN
0167-4048
EISSN
1872-6208
卷号96
摘要

Insider threat protection has received increasing attention in the last ten years due to the serious consequences of malicious insider threats. Moreover, data leaks and the sale of mass data have become much simpler to achieve, e.g., the dark web can allow malicious insiders to divulge confidential data whilst hiding their identities. In this paper, we propose a novel approach to predict the risk of malicious insider threats prior to a breach taking place. Firstly, we propose a new framework for insider threat risk prediction, drawing on technical, organisational and human factor perspectives. Secondly, we employ a Bayesian network to model and implement the proposed framework. Furthermore, this Bayesian network-based prediction model is evaluated in a range of challenging environments. The risk level predictions for each authorised users within the organisation are examined so that any insider threat risk can be identified. The proposed insider threat prediction model achieved better results when compared to the empirical judgments of security experts

关键词
相关链接[Scopus记录]
收录类别
SCI ; SSCI ; EI
语种
英语
学校署名
其他
资助项目
National Science Foundation of China (NSFC)[61873119] ; EU[771066]
WOS研究方向
Computer Science
WOS类目
Computer Science, Information Systems
WOS记录号
WOS:000564606700013
出版者
EI入藏号
20202408812123
EI主题词
Forecasting
EI分类号
Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85086069682
来源库
Scopus
引用统计
被引频次[WOS]:15
成果类型期刊论文
条目标识符//www.snoollab.com/handle/2SGJ60CL/138461
专题工学院_计算机科学与工程系
作者单位
1.Department of Cyber Security and Networks,Glasgow Caledonian University,G4 0BA,United Kingdom
2.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
3.School of Business & Economics,Loughborough University,LE11 3TU,United Kingdom
4.School of Informatics,University of Leicester,LE1 7RH,United Kingdom
推荐引用方式
GB/T 7714
Elmrabit,Nebrase,Yang,Shuang Hua,Yang,Lili,et al. Insider Threat Risk Prediction based on Bayesian Network[J]. COMPUTERS & SECURITY,2020,96.
APA
Elmrabit,Nebrase,Yang,Shuang Hua,Yang,Lili,&Zhou,Huiyu.(2020).Insider Threat Risk Prediction based on Bayesian Network.COMPUTERS & SECURITY,96.
MLA
Elmrabit,Nebrase,et al."Insider Threat Risk Prediction based on Bayesian Network".COMPUTERS & SECURITY 96(2020).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Insider Threat Risk (3955KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Elmrabit,Nebrase]的文章
[Yang,Shuang Hua]的文章
[Yang,Lili]的文章
百度学术
百度学术中相似的文章
[Elmrabit,Nebrase]的文章
[Yang,Shuang Hua]的文章
[Yang,Lili]的文章
必应学术
必应学术中相似的文章
[Elmrabit,Nebrase]的文章
[Yang,Shuang Hua]的文章
[Yang,Lili]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

Baidu
map